数学の問題一覧

カテゴリ
以上
以下

第1回琥珀杯 大問4

Kohaku 採点者ジャッジ 難易度:
3月前

7

$a^2+b^2+c^2+d^2+e^2=13053769$を満たす自然数$(a,b,c,d,e)$の組を1つ求めよ。ただし、$a<b<c<d<e$とする。

解答形式

a,b,c,d,e,fの順で、間を半角スペースで区切り解答してください。
(例)$(a,b,c,d,e)=(1,2,3,4,5)$だった場合
→1 2 3 4 5

第1回琥珀杯 大問1

Kohaku 自動ジャッジ 難易度:
3月前

13

問題文

正整数$n$の値を無作為に定めるとき、$\sqrt{n}^\sqrt{n}$が有理数となる確率を求めよ。

解答形式

0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。

3月前

4

問題文

どの$2$辺の長さも等しくない鋭角三角形$ABC$の外心,垂心をそれぞれ$O,H$とし,辺$BC$の中点を$M$とします.
$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,直線$DE$と直線$AB$の交点を$P$,直線$DF$と直線$AC$の交点を$Q$とすると,$$
EF=4 AH=5 PQ||AM$$が成り立ちました.直線$PQ$と直線$OH$との交点を$R$とするとき,線分$OR$の長さの$2$乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表されるので,$a+b$の値を解答してください.

解答形式

半角で解答してください.

3月前

17

問題文

$ $ 原点を $O$ とする $xy$ 平面において,(正とは限らない)整数 $n$ に対し座標 $(60, n)$ の点を $P_n$ と表します.$n$ を整数全体で動かしたとき,線分 $OP_n$ の長さとしてあり得る整数値の総和を求めて下さい.

解答形式

半角英数にし,答えとなる正整数値を入力し解答して下さい.

シンプルな幾何

MrKOTAKE 自動ジャッジ 難易度:
4月前

6

問題文

鋭角三角形$ABC$があり外心を$O$とする.直線$BO$と$AC$の交点を$D$とおくと$BC=BD,DO=5,AD=6$であったので$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

2022文化祭

Kta 自動ジャッジ 難易度:
4月前

3

問題文

三角形 $ABC$ について,辺 $BC,CA,AB$ の中点をそれぞれ $D,E,F$ とし,三角形 $ABC, DEF$ の垂心をそれぞれ $H_1, H_2$ とすると,以下が成立しました.$$H_1H_2=3\sqrt{3},\quad DH_2=1,\quad \angle{H_1H_2D}=150^{\circ}$$このとき,三角形 $ABC$ の面積の $2$ 乗の値を求めてください.

解答形式

半角数字で入力してください。

2023文化祭1

Kta 自動ジャッジ 難易度:
4月前

9

問題文

$p^2-pq-q^2+p+q=0$ を満たす素数の組 $(p,q)$ すべてについて,$p+q$ の総和を求めてください.

解答形式

半角数字で入力してください。

学びを得たので共有3

cipher703516247 自動ジャッジ 難易度:
4月前

5

問題文

$$[(5√2)+7)^{2011}]を14,49,50でそれぞれ割った余りの合計を求めろ$$
ただし[x]でxの以下の最大の整数とする。
また、順に余りをx,y,zとしたとき0≦x≦13,0≦y≦48,0≦z≦49とする

学びを得たので共有2

cipher703516247 自動ジャッジ 難易度:
4月前

6

問題文

非負整数r,sを用いて
$$334r+2025s=m$$の形に表せない正の整数mの個数を求めろ

学びを得たので共有1

cipher703516247 自動ジャッジ 難易度:
4月前

19

問題

縦19区画、横28区画のグリッドがある
右折(↑→)と左折(→↑)両方の数の和が10である時
最短経路は何通りあるか?

解答形式

非負整数で答えろ

KOTAKE杯003(H)

MrKOTAKE 自動ジャッジ 難易度:
4月前

29

問題文

鋭角三角形$ABC$があり垂心を$H$とする.$H$に関して$A$と対称な点を$D$とすると,
$4$点$ABCD$は共円であり$BH=5,AC=20$であったので
$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(C)

MrKOTAKE 自動ジャッジ 難易度:
4月前

38

問題文

正方形$ABCD$があり線分$CD$上に$∠DAP=19°$となるよう点$P$をおき,
$P$から$AC$への垂線の足を$H$とするとき$∠CBH$の大きさを度数法で解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.