公開日時: 2024年11月9日13:54 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$$
\lim_{n \to \infty} n \left\{ \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{2025}-\int_{0}^{1} x^{2025}dx \right\}
$$を求めよ。
答えは互いに素な自然数$p,q$を用いて$\displaystyle\frac{p}{q}$とあらわされるので$p+q$を半角で1行目に記入してください。
公開日時: 2024年11月2日19:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:
$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$
互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.
公開日時: 2024年11月2日19:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.
このとき,3点 $ C,H,S$ が同一直線上にあった.
$$AH=17 , AO=11$$
のとき,三角形 $ABC$ の面積を求めてください.
答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.
公開日時: 2024年10月22日20:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
三角形ABCがある。初めに頂点ABCいずれかの頂点にランダムに駒を1つ置き、
操作nを繰り返し行うことで駒を移動させる。
$操作n:$$ カードがそれぞれn,n+1,n+2枚入った箱ABCを用意する。$$それぞれの箱にあたりの
カードが3,4,2枚入っている。$$
頂点Aにいる時は、まず箱BかCをランダムに選び、$$選んだ箱からカードを1枚引く。$$箱Bであたりを引くと頂点Aにそのまま、$$箱Cであたりを引くと頂点Bに、$$どちらの箱においてもハズレを引くと頂点Cに移動する。$$頂点Bにいる時は、箱Aからカードを1枚引き、$$あたりをひくと頂点Aに、$$ハズレだと頂点Cに移動する。
$$頂点Cにいるときは何もしない。$
$操作3→操作4→操作5→・・・→操作kを行った時(3 \leq k)頂点Aに駒がいる確率を求めよ。$