数学の問題一覧

カテゴリ
以上
以下

atawaru

公開日時: 2025年9月28日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$n$ を $3$ 以上の奇数とします.いま,円に内接する凸 $n$ 角形 $P_1P_2\dots P_n$ があり,$k=1,2,\dots,n$ について角 $P_k$ の大きさを ${a_k}^{\circ}$ としたところ,

$$\sum_{k=1}^{\frac{n-1}{2}}a_{2k}=7777$$

が成立しました.このとき,度数法での角 $P_1P_2P_n$ の大きさとして考えられる値の総和を解答してください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

atawaru

公開日時: 2025年9月28日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$13$ の倍数である $9$ 桁の正整数であって,上 $3$ 桁の整数も上 $6$ 桁の整数も $13$ の倍数であるようなものはいくつありますか?

解答形式

答えは非負整数値となるので,それを半角で解答してください.

atawaru

公開日時: 2025年9月28日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$2$ 以上の整数 $n$ のうち,次の条件を満たすものはいくつありますか?

  • $n$ の $k$ 個の正の約数を小さい順に $d_1,d_2,\dots,d_k$ としたとき,任意の $1$ 以上 $k-1$ 以下の整数 $i$ について $d_{i+1}-d_i\leq40$ が成立する.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

atawaru

公開日時: 2025年9月28日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

以下の条件をすべて満たすような正整数 $n$ はいくつありますか?

  • $n$ は $3$ の倍数である.

  • $2$ 進法で表記した $n$ はちょうど $15$ 桁の数で,そのうち $5$ つの桁の数字が $0$ である.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

atawaru

公開日時: 2025年9月28日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$1000$ の正の約数の集合を $D$ とします.また,$999$ 次方程式

$$x^{999}+x^{998}+\dots+x+1=0$$

の $999$ 個の解を $x=x_1,x_2,\dots,x_{999}$ とします.このとき,

$$\sum_{d\in D}^{}\sum_{s=1}^{999} x_s^d$$

の値を求めてください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

atawaru

公開日時: 2025年9月28日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

ある正の実数 $k$ があり,$x$ についての $4$ 次多項式 $f(x)$ を

$$f(x)=x^4+4kx^3+3kx^2+2kx+k$$

と定めます.方程式 $f(x)=0$ は相異なる $4$ 個の複素数解を持ったのでそれらを $\alpha,\beta,\gamma,\delta$ とし,さらに $x$ についての $4$ 次多項式 $g(x)$ を,$4$ 次の項の係数が $1$ であり,かつ方程式 $g(x)=0$ が $4$ 個の複素数解 $\dfrac{1}{\alpha},\dfrac{1}{\beta},\dfrac{1}{\gamma},\dfrac{1}{\delta}$ を持つように定めます.
$g(6)=2025$ であるとき,$k$ の値を求めてください.

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

atawaru

公開日時: 2025年9月28日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$26$ 種類あるアルファベットの大文字からなる文字列に対し,次のようにして整数を対応付けます.

  • $k$ 文字の文字列を考える.$1\leq i\leq k$ なる整数 $i$ について $i$ 文字目が $a_i$ 番目のアルファベットの大文字であるとき,$a_1,a_2,\dots,a_k$ を続けて書く.

例えば,文字列 $CAT$ は,$C$ が $3$ 番目,$A$ が $1$ 番目,$T$ が $20$ 番目のアルファベットであるから $3120$ となります.このように,ある文字列に対応付けられる整数は一意に定まります.
いま,ある文字列に対応付く整数が $12012311821$ となりました.元の文字列として考えられるものはいくつありますか?

解答形式

答えは非負整数値となるので,それを半角で入力してください.

smasher

公開日時: 2025年9月26日11:30 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$x,y$を整数、$p$を素数とする。
$x^2-xy+y^2=2^p$を満たす組$(x,y,p)$をすべて求めよ。

解答形式

$x+y+p$の値としてありうる値の総和を半角数字で入力してください。

Mid_math28

公開日時: 2025年9月25日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

以下のように点 $O$ を中心とする円周上に三角形 $ABC$ が内接しています。この円の内部に点 $D$ を取ると、$AB=BC=AO=4,\angle BAD=90°$ が成り立ち、さらに三角形 $AOD$ の面積は $3\sqrt{3}$ でした。このときの線分 $CD$ の長さの $2$ 乗を求めてください。

解答形式

解答は正の整数値になるので、その値を半角数字で解答してください

Mid_math28

公開日時: 2025年9月25日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB=10,BC=21,CA=17$ をみたす三角形 $ABC$ の内心を $I$ とします。辺 $AB$ 上に点 $D$ をとると、直線 $DI$ が三角形 $ABC$ の面積を $2$ 等分し、さらに辺 $BC$ と交わりました。このときの線分 $AD$ の長さを求めてください。

解答形式

$AD$ の長さは正整数$a,b$を用いて $\sqrt{a}-b$ と表されるので、$a+b$ を解答してください

Mid_math28

公開日時: 2025年9月25日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

相異なる $1$ 以上 $9$ 以下の整数の組 ($A,E,M,S,T,U,Y$) が以下の覆面算を満たしています

$$\begin{array}{rr}
& MATU \\
+ & YAMA \\
\hline
& EAST
\end{array}$$
このとき、$EAST$ としてありうる値を見つけてください。

解答形式

$EAST$ としてありうる値が$3$つ存在するので、それらの総和を解答してください。

Mid_math28

公開日時: 2025年9月25日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

複素数$\alpha,\beta,\gamma$が
$$\begin{cases}
\alpha+\beta+\gamma=9\\
\alpha^2+\beta^2+\gamma^2=25\\
\alpha^3+\beta^3+\gamma^3=2025
\end{cases}$$
を満たしています。このとき、$f(x)=0$ が $\alpha,\beta,\gamma $を解に持ち、かつ最高次係数が $1$ であるような $3$ 次関数 $f(x)$ が一意に存在するので、$❘f(2)❘$ を求めてください。

解答形式

解答は正の整数値になるので、その値を解答してください