数学の問題一覧

カテゴリ
以上
以下

re.ghuS

公開日時: 2024年9月21日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$a$を$b$で割った余りを$f(a, b)$とする.
このとき,$\sum\limits _{n=1} ^{10000} f(n!+1, n+1)$の値を求めよ.

re.ghuS

公開日時: 2024年9月21日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$p, q$を素数とする.自然数$N=p^6-q^6$と表され、相違なる素因数をただ3つもつとき,$N$の値を求めよ.

re.ghuS

公開日時: 2024年9月21日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$H$高校には一郎,二郎,三郎,...,$n$郎の$n$人の生徒が在籍している.この$n$人が英語と数学の試験を受けたとき,英語の分散が2,数学の分散が8,英語と数学の相関係数が0.5であった.
$1 \leq k \leq n$を満たす自然数$k$について,$\vec{a}$の第$k$成分は$k$郎の英語の平均値との偏差,$\vec{b}$の第$k$成分は$k$郎の数学の平均値との偏差となるように$\vec{a}, \vec{b}$を定義する.
このとき,$\vec{a}$と$\vec{b}$の内積$\vec{a}\cdot\vec{b}$を求めよ.

re.ghuS

公開日時: 2024年9月21日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


長方形$ABCD$がある.$BC$上に点$E$を,$CD$上に点$F$を以下の式が成り立つように取る.\
$\angle BAE=\angle CEF$,$\angle AFD=2\angle CEF$,$DF=2$,$CF=\sqrt{5}-2$が成り立つとき,$\angle DAF$の値を度数法で求めよ.

re.ghuS

公開日時: 2024年9月21日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


12色で,正八面体の各頂点を全ての頂点が異なる色になるように塗るとき,色の塗り方は何通りあるか求めよ.ただし,回転して一致するものは同じものと数える.

poino

公開日時: 2024年9月19日19:48 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$n$ 以下の正整数のうち $n$ と互いに素なものの個数を表す $φ(n)$ を $a$ 回合成した関数を $φ^a(n)$ と書くとき、$φ^a(n)=1$ を満たす最小の $a$ が $8$ であるような $n$ の最小値と最大値のを解答してください。

解答形式

半角数字で入力してください。

y

公開日時: 2024年9月18日16:14 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
log_{2}\sqrt{log_381}
$$

y

公開日時: 2024年9月18日15:54 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
|\int_{0}^{3}\frac{\sqrt{{9}{x}^{2}-{27}{x}+{81}}}{3x-9}dx|
$$

y

公開日時: 2024年9月18日15:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
\int_{0}^{2}(\sqrt{81x^2}-\sqrt{9})dx
$$

y

公開日時: 2024年9月18日11:42 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
|\int_{0}^{2}\frac{log_{3}{9}^x}{log_{3}{27}}dx|
$$

nanohana

公開日時: 2024年9月16日22:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

数列 極限 漸化式

問題文

$$S_{n}=(n-2)a_{n+1}$$$$a_{1}=1$$$$\lim_{n\to \infty}S_{n}が有限の値に収束する。$$$$このとき、a_{3}の値を求めよ。$$$$ただし、S_n=a_1+a_2+・・・+a_nである。$$

解答形式

$$a_{3}の値を半角数字で入力してください。$$

katsuo_temple

公開日時: 2024年9月16日18:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$n^2-n+1$が平方数となるような非負整数$n$を全て求めよ。

解答形式

$n$を小さい順に改行して半角で解答して下さい。
例)$n=3,7,9$の場合
3
7
9
と解答して下さい。