公開日時: 2025年7月15日18:22 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 採点者ジャッジ
プロジェクト空間 $\mathbb{P}^2$ 内の射影多様体 $V = Z(x^3 + y^3 + z^3) \subset \mathbb{P}^2$ を考える。この多様体が非特異であることを示しなさい。
証明してください。
公開日時: 2025年7月14日21:45 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
$p$ を $101$ 以上の素数とする。$g$ を法 $p$ における原始根とし、$1$ から $p-1$ までの整数 $k$ に対して、$g^{\text{ind}(k)} \equiv k \pmod p$ となる $0 \le \text{ind}(k) \le p-2$ の整数 $\text{ind}(k)$ を定める。
ある整数 $k$ ($2 \le k < p$) に対して、数列 ${a_n}$ を以下で定める。
* $a_1 = k$
* $a_{n+1} \equiv a_n \cdot g \pmod p \quad (n=1, 2, 3, \dots)$
また、数列 ${b_n}$ を $b_n = \text{ind}(a_n)$ で定め、数列 $\ {b_n}$ の初項から第 $p-1$ 項までの和
$S = \sum_{n=1}^{p-1} b_n$
とする。
このとき、和 $S$ が $2000$ で割り切れるような素数 $p$ の最小値を求めよ。
半角左詰め
公開日時: 2025年7月14日21:45 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
数列 ${a_n} $を、初項 $a_0 = 2, a_1 = 1 $と、漸化式 $a_{n+2} = a_{n+1} + a_n (n ≧ 0) $によって定める。
集合 $S $を、$1 ≦ k ≦ 42$ を満たす整数$ k $のうち、方程式 $m^2 - 43n = k $が整数解 $(m, n)$ を持たないような $k$ 全体の集合とする。
このとき、積 $P$ $= ∏_{k ∈ S} a_k$ を$43$で割った余りを求めよ。
半角左詰め
公開日時: 2025年7月9日21:59 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: ジャッジなし
全ての自然数に対し、偶数の時は2で割り、奇数の時は1を足して2で割る操作を繰り返すと必ず1になることを証明せよ。
特に指定はなし。
公開日時: 2025年7月9日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
鋭角三角形 $ABC$ があり,辺 $BC$ の中点を $M$ とし,線分 $AC$ 上に点 $D$ を,$\angle CBD=\angle CAM$ を満たすようにとると,
$$AD=1,\quad BD=6\sqrt{2},\quad DM=4\sqrt{2}$$
が成立しました.このとき,線分 $AB$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年7月9日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB=AC$ を満たす鋭角三角形 $ABC$ があり,その外接円上に点 $D(\neq B)$ を,$AC\perp BD$ を満たすようにとると,
$$CD=3,\quad AD=7$$
が成立しました.このとき,線分 $AB$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.