数学の問題一覧

カテゴリ
以上
以下

Lim_Rim_

公開日時: 2025年4月7日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$8$ つのアルファベット $\mathrm{I, M, L, I, M, R, I, M}$ を並べて得られる文字列であって,$\mathrm{L}$ が $\mathrm{R}$ より左にあるでかつ,$\mathrm{I}$ の右隣に $\mathrm{M}$ が来るものはいくつありますか.

U.N.Owen

公開日時: 2025年4月7日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


円 $\Omega$ に内接する三角形 $ABC$ があり,$AB=13,BC=14,CA=15$ を満たしています.
 線分 $BC$ の中点を $M$,$A$ を通り直線 $BC$ と直交する直線と $\Omega$ との交点のうち $A$ でない方を $D$ とします.
 直線 $AM,DM$ と $\Omega$ との交点のうちそれぞれ $A,D$ でない方を $P,Q$ とし,直線 $BC$ と直線 $PQ$ との交点を $R$ とするとき,三角形 $MQR$ の面積は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.

tori9

公開日時: 2025年4月7日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ の内心と外心をそれぞれ $I, O$ としたところ,$AI=AO$ が成り立ちました.三角形 $ABC$ の内接円,外接円の半径がそれぞれ $142, 857$ であるとき,$\angle{A}$ 内の傍接円の半径を求めてください.

解答形式

例)答えは互いに素な正整数 $a, b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.

shakayami

公開日時: 2025年4月7日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$a, b$ を非負整数とします。xy平面上の点 $(0, 0)$から点 $(a, b)$まで、$x$ 軸正方向に1進むか、$y$ 軸正方向に1進むかで到達するための道の数を $C(a, b)$ とします。

$0 \leq a < 1100 $ かつ $0 \leq b < 1100 $ であるような非負整数組 $(a, b)$ であって、$C(a, b)$ が奇数であるようなものの個数を答えてください。

解答形式

答えは非負整数なので,その数値を回答してください.OMCと同じです.

U.N.Owen

公開日時: 2025年4月7日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


どの桁の数も $2$ 以下の非負整数であるような $14$ 桁の正の整数のうち,$7$ の倍数であるようなものの個数を答えてください.

kzy33550336

公開日時: 2025年4月7日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$2^{2^{10}}$ を素数 $2027$ で割った余りを求めてください.

MARTH

公開日時: 2025年4月5日20:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$N=9000^2\times 9001$ とし, 以下の条件を満たす整数の組の列 $(x_0,y_0,z_0), (x_1,y_1,z_1) ,\dots,(x_{N},y_{N},z_{N})$ を良い列 と呼びます.

  • $(x_0,y_0,z_0)=(x_{N},y_{N},z_{N})=(0,0,0)$.
  • $n=1,2,\dots,N$ について, $(x_n-x_{n-1},y_n-y_{n-1},z_n-z_{n-1})$ は $(1,-1,0)$ の $6$ 通りの並べ替えまたは $(0,0,0)$ のいずれかに等しい.

このとき良い列について $(x_i,y_i,z_i)=(x_{i-1},y_{i-1},z_{i-1})$ を満たす $i\;(i=1,2,\dots,N)$ の個数を $k$ としたとき $2^k$ をその列の 良さ とします. 良い列すべてについてその良さの総和を $S$ とします. このとき $S$ を素数 $8999$ で割った余りを求めてください.

tandainohito

公開日時: 2025年4月4日17:09 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

以下の無限級数の値を求めてください。
$$ S = \sum_{n=1}^{\infty} \frac{1}{n^2 \binom{2n}{n}} $$
ここで、
$$
\begin{pmatrix} 2n \\ n \end{pmatrix}=\frac{(2n)!}{(n!)^2}
$$は中央二項係数です。

解答形式

$\frac{9^2}{5}$の場合は、9^2/5のように解答してください。

mahiro

公開日時: 2025年4月2日17:54 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数

問題文

以下によって定義される整数 $N$ を素数 $13907$ で割った余りを求めてください.$$N=\prod_{k=1}^{13906} (k^2+2025)$$

解答形式

13906以下の非負整数で解答してください

Ryomanic

公開日時: 2025年4月2日8:50 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。
(似た問題を投稿しています。解答する場所を間違えないように注意してください。)

解答形式

互いに素な正整数p,qを用いてp/qと表せるため
p+qを解答してください。

Ryomanic

公開日時: 2025年4月2日8:49 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。

解答形式

互いに素な正整数q,pを用いて
p/q と表せるため、p+qを解答してください。

Kohaku

公開日時: 2025年4月2日0:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB=1$の正十二角形$ABCDEFGHIJKL$がある。$KD$と$CJ$、$AF$と$DK$、$AF$と$DI$、$DI$と$EJ$、$AH$と$EJ$、$AH$と$CJ$の交点を、それぞれ$M,N,O,P,Q,R$とする。六角形$MNOPQR$の面積を求めよ。

解答形式

互いに素な正整数$a,b,c$及び平方因子をもたない正整数$d$を用いて、$\frac{b−c\sqrt{d}}{a}$と表せます。$a+b+c+d$を解答してください。