公開日時: 2024年12月6日21:59 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(4)$ できた2次方程式が異なる2つの実数解をもつとき,その2解が共に負である条件付き確率を求めよ。
$$
(求める条件付き確率)=\frac{A(Bn+C)(Dn+E)(Fn+G)}{Hn(In+J)(Kn+L)}
$$
$A$~$L$に当てはまる整数を半角数字,空白区切りで解答
わざとわかりづらくしてるので,1が入るところとかあります。
この問題は(4)です。(3)までを解かなくてもできますが,少し大変かもしれません。
公開日時: 2024年12月6日21:58 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(3)$ $\lim_{n\to \infty}P(n)$を求めよ。
(4)は,自作場合の数・確率1-4につづく
2025/01/07追記
解説をアップデート,全員に対して公開に設定
分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答
この問題は(3)です。自作場合の数・確率1-2を解いてから解くことをお勧めします。
公開日時: 2024年12月6日21:57 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(2)$ $P(n)$を$n$の式で表せ。
(3)(4)は,自作場合の数・確率1-3につづく
2025/01/07追記
解説をアップデート,全員に対して公開に設定
$$
P(n)= \frac{A(Bn+C)(Dn+E)}{F(Gn^{2}+Hn+I)}
$$
$A$~$I$に当てはまる整数を半角数字,空白区切りで回答
文字式の分数解答で自動ジャッジするのが大変だったので穴埋め式です。
わざとわかりづらくしてるので、1が入るところとかあります。
この問題は(2)です。が(1)を解かなくてもできます。解くと作者が喜びます。
公開日時: 2024年12月6日21:56 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(1)$ $P(2)$の値を求めよ。
(2)~(4)は,自作場合の数・確率1-2につづく
2025/01/07追記
解説をアップデート,全員に対して公開に設定
分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答
公開日時: 2024年12月6日21:13 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$1$ 以上 $15$ 以下の整数の組 $(a, b, c)$ であって
$$(2a + 2b + 2c - 33)^2 = (|2a - 9| + |2b - 11| + |2c - 13|)^2$$
をみたすものは全部でいくつありますか?
半角英数にし,答えとなる非負整数値を入力し解答して下さい.
公開日時: 2024年11月28日19:33 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB≠AC$を満たす鋭角三角形$ABC$の内心を$I$とする。三角形$ABC$の内接円$\omega$は辺$BC,CA,AB$とそれぞれ点$D,E,F$で接している。$D$を通り$EF$に垂直な直線と$\omega$の交点のうち,$D$でない方を$G$とし,直線$AG$と$\omega$の交点のうち,$G$でない方を$H$とする。さらに,三角形$BHF$と三角形$CHE$の外接円の交点のうち,$H$でない方を$J$とし,直線$HJ$と直線$DI$の交点を$X$とすると以下が成立した。
$$
DX=\sqrt{1122} AH||DX DG=22
$$
このとき,$AX^{2}$は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せられるので,$a+b$の値を解答して下さい。
半角数字で解答して下さい。
公開日時: 2024年11月26日23:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\triangle{ABC}$ について直線 $BC$ 上に $W,B,C,E$ の順と並ぶように点 $W,E$ を取ると以下のことが成立しました.
このとき $\triangle{BAE}$ の外心を $O$ とすると,互い素な正整数 $a,b$ を用いて,
$$\triangle{BAE}:\triangle{WAO}=a:b$$
と面積比が表せるので $a+b$ の値を解答してください.
半角整数で入力してください.
公開日時: 2024年11月26日23:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$7216$ のように,
の $2$ 条件を満たす $4$ 桁の正整数を 祭数 といいます.最大の祭数を解答してください.ただし,上 $2$ 桁目等が $0$ である場合の上 $1$ 桁を無視してできる数とは上 $1$ 桁の数とそれに続く $0$ を無視した数とします.例えば $1011$ の上 $1$ 桁を無視してできる数は $11$ です.
半角整数で入力してください.
公開日時: 2024年11月26日23:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
点 $O$ を中心とする半径 $1$ の円と,その円に内接する正 $169$ 角形 $A_1A_2\cdots A_{169}$ が与えられています.この正 $169$ 角形の頂点のうち,$A_{169}$ を除いた $168$ 頂点から $3$ 点を選ぶ方法は ${}_{168}\mathrm{C}_3$ 通り考えられますが,それらすべてについて選んだ $3$ 点を頂点とする三角形の垂心と $O$ の距離の $2$ 乗の総和を解答してください.(総和の $2$ 乗ではないことに注意してください.)