【補助線主体の図形問題 #088】
しばしば休んでしまいましたが、今週の図形問題をお送りします。今週は意味ありげな折れ線を登場させてみました。いろいろな関係を発見しながら、どうぞお楽しみください。
${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$ $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。
一辺が $1$ の正三角形 $\mathrm{ABC}$ の重心を $\mathrm{G}$ とするとき, $\mathrm{AG}$, $\mathrm{BG}$, $\mathrm{CG}$ のそれぞれを軸としてこの正三角形を一回転させて得られる三つの回転体の共通部分の体積を求めよ.
解答形式を変更しました.
解答は $\fbox{A}\text{ - }\fbox{F}$ をいずれも自然数として最も簡単な形で
$$
\frac{\sqrt{\fbox{A}}}{\fbox{B}}\arctan{\fbox{C}\sqrt{\fbox{D}}}-\frac{\sqrt{\fbox{E}}}{\fbox{F}}
$$
と表されます. 1行目に文字列 $\fbox{A}\fbox{B}\fbox{C}\fbox{D}\fbox{E}\fbox{F}$ を解答してください.
放物線 $y=x^2$ のグラフ上に両端をもつ長さ $L$ の線分がある. この線分が放物線に沿って一定の方向にくまなく動くとき, 次の問いに答えよ. ただし, $L$ は定数とする.
(1) 端点の軌跡が不連続点をもたないような $L$ の最大値を求めよ.
(2) $L$ が(1)の値をとるとき, 線分が通過する領域の面積を求めよ.
解答形式を変更しました.
解答するのは(2)のみです. (2)の解答は $\fbox{A}\text{ - }\fbox{G}$ をいずれも自然数として最も簡単な形で
$$
\frac{\fbox{A}}{\fbox{B}}\arctan\frac{\fbox{C}}{\sqrt{\fbox{D}}}+\frac{\fbox{E}\sqrt{\fbox{F}}}{\fbox{G}}
$$
と表されます. 1行目に文字列 $\fbox{A}\fbox{B}\fbox{C}\fbox{D}\fbox{E}\fbox{F}\fbox{G}$ を解答してください.
定点 $\mathrm{P_0}$, $\mathrm{P}$ があり, $\mathrm{P_0 P}=1$ を満たしている.
線分 $\mathrm{P_0 P}$ の中点を $\mathrm{P_1}$,
線分 $\mathrm{P_1 P}$ の中点を $\mathrm{P_2}$,
線分 $\mathrm{P_2 P}$ の中点を $\mathrm{P_3}$, ... というように, $n\in\mathbb{N}$ に対し, 点 $\mathrm{P_\mathit{n}}$ を 線分 $\mathrm{P_{\mathit{n}-1}\mathrm{P}}$ の中点として, 線分 $\mathrm{P_0 P}$ 上に無数の点をとる. いま, このようにしてできた全ての点が同時に出発して, 点 $\mathrm{P_\mathit{n}}$ が点 $\mathrm{P_{\mathit{n}-1}}$ を中心として円を描くように動くとき, $\displaystyle\lim_{n\to\infty}\mathrm{P_\mathit{n}}$ が描く曲線の長さを求めよ.
ただし, 線分 $\mathrm{P_0 P_1}$ が線分 $\mathrm{P_0 P}$ に対してなす角,
線分 $\mathrm{P_1 P_2}$ が線分 $\mathrm{P_0 P_1}$ に対してなす角,
線分 $\mathrm{P_2 P_3}$ が線分 $\mathrm{P_1 P_2}$ に対してなす角, ...
線分 $\mathrm{P_\mathit{n} P_{\mathit{n}+1}}$ が線分 $\mathrm{P_{\mathit{n}-1} P_\mathit{n}}$ に対してなす角の変化はすべて等しく, 一定の割合であるとする.
tima_C様のご指摘を受け、難易度を変更しました.
解答形式を変更しました. 解答に影響はありません.
スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.
ただし, 文字や根号などの係数が分数の場合は
$$
\frac{3}{2}x\rightarrow\frac{3x}{2}
$$
のように, 文字を分子にまとめてください.
【補助線主体の図形問題 #087】
今週の図形問題は面積関係をテーマにしてみました。中点だらけということもあり、複雑な計算は不要です。自信のある方はぜひ暗算で処理してみてください。
${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\ \mathrm{cm}^2$ → $\color{blue}{14.14}$
入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。
【補助線主体の図形問題 #086】
今週の図形問題です。今回は円弧と垂線を組み合わせてみました。円弧と垂線が組み合わさったときに生じる性質をお楽しみください。補助線が活躍するのはいつも通りですよ!
${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$ $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。
$2(x-y)^2-xy(x^2+2xy+y^2-3)+(2x+2y)^2-(x+y)^2+xy[(x+y)(x-y)+2y(x+y)+5]$
半角で解答のみを記入すること
降べきの順で記入すこと
同じ項の中にx,yが同時にある場合、xを先に記入すること
指数の表記は ^n の形で解答すること
括弧の外にある係数は左側に記入すること
括弧内の項は、文字 数 の順に記入すること
【補助線主体の図形問題 #085】
2023年初頭は西暦問題をお送りしてきたので、当問が今年初の図形問題になります。図形問題初めは求角問題にしてみました。
僕は(ほぼ)毎週日曜の夜に図形問題を投稿しており、基本的にどれも補助線を引いて解けるよう意識しています。とはいえ、解き方は自由です。補助線主体の問題を代数的にねじ伏せることに快感を覚える方もいらっしゃるでしょう。どうぞお好きなように解いてください。
${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12^{\circ}$ → $\color{blue}{12.00}$ $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
入力を一意に定めるための処置です。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。
${}$ 西暦2023年問題第7弾、今年最後の西暦問題です。ラストを飾るのは循環小数です。循環小数というテーマ自体が奥深いわけですが、その一端を味わえるようにしました。どうぞ最後までお付き合いください。
${}$ いつもの図形問題ですが、明日1月8日(日)は出題をお休みして、翌週1月15日(日)から再開する予定です。お待たせしていますが、またどうぞよろしくお願いします。
${}$ 解答は、$N$の値をそのまま入力してください。「$N=$」の記載は不要です。
(例) $N=107$ → $\color{blue}{107}$