数学の問題一覧

カテゴリ
以上
以下

OMCB020(E)の改題案だったヤツ

Shota_1110 自動ジャッジ 難易度:
7月前

25

問題文

正整数 $x, y$ が
$$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$
をみたすとき,$x$ のとり得る最小の値を求めて下さい.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

余談

OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732)
のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です.
4bにそぐわないとしてOMCへの使用には至りませんでしたが,せっかくなのでよければ解いてみてください.

面積の最大値

skimer 採点者ジャッジ 難易度:
7月前

5

問題文

半径1の円上に3点A,B,Cを取る
三角形ABCの面積の最大値を答えよ

解答形式

答えのみ

削除

skimer ジャッジなし 難易度:
7月前

0

なし

cosの性質

skimer 採点者ジャッジ 難易度:
7月前

1

問題文

$$
\cos n\thetaは\cos\thetaのみで表せるか
$$

解答形式

表せないときは反例を
表せるときは記述で答えなさい

Circle(very easy)

Weskdohn 自動ジャッジ 難易度:
7月前

1

問題文

半径$15$の円$ω$について,ある直径$AB$を考える.
$AB$を三等分する点を順に$P,Q$とし(つまり$A・P・Q・B$の順に点が並ぶ),
$AP$を直径とする円$X$を描く.
また,$AB$に直交する直径$CD$について,同様に$R,S$を取り($C・R・S・D$の順),$CR$を直径とする円$X'$を描く.
ここで,円$X$の接線の内,$CD$と平行で且つ円$X'$側のものを直線$F$,円$X'$の接線の内,$AB$と平行で且つ円$X$側のものを直線$G$とする.
直線$F,G,$円$ω$に接する円$T$として考えられるものは$2$つあるが,そのうち小さい方の半径を求めよ.

解答形式

答えは整数$n,m,l$で$n√m+l$と書ける.
$n+m+l$を求めて下さい.
尚,マイナス含め,全て半角で打ち込むこと.

追記

続編(normal):https://pororocca.com/problem/2048/

Circle(normal)

Weskdohn 自動ジャッジ 難易度:
7月前

2

問題文

点の定義は次をチェック(https://pororocca.com/problem/2047/)
$円X,X',ω$に接する円の内,小さい方の円$T'$の半径を求めよ.

解答形式

答えは互いに素な整数$a,b,c,d$で,$\frac{a+b√c}{d}$と書けるので,$a+b+c+d$を求めて下さい.但しd>0.
尚,半角で打ち込むこと.

BE+CE=?

nepia_nepinepi 自動ジャッジ 難易度:
7月前

6

問題文

正方形$ABCD$の外接円の劣弧$BC$上に点$E$がある。$AE+DE=10$ が成り立っているとき、$BE+CE$の値を求めよ。

解答形式

答は非負整数$a,b$を用いて$-a+\sqrt{b}$と表されるので、$a+b$の値を半角数字で解答してください。

初等幾何

gurotan 自動ジャッジ 難易度:
7月前

2

問題文

次の問題の空欄に当てはまる数字を答えてください

解答形式

1行目に一つ目の空欄を補う数字、
2行目に二つ目の空欄を補う数字を書いてください

初等幾何

gurotan 自動ジャッジ 難易度:
7月前

0

問題文

次の画像の空欄に当てはまる数字を答えてください。
https://drive.google.com/file/d/1it_TfAjOic8pwV5ZPUd3P9ZRirM-7Evm/view?usp=drivesdk

解答形式

1個目の□に当てはまる数字を1行目、2個目の□は2行目に書いてください

幾何

sdzzz 自動ジャッジ 難易度:
7月前

8

問題文

$AB\lt AC$ なる鋭角三角形 $ABC$ があり,$BC$ の中点を $M$ とします.また,直線 $AB$ に $B$ で接し $M$ を通る円を $\Gamma_1$ ,直線 $AC$ に $C$ で接し $M$ を通る円を $\Gamma_2$ とし,直線 $AM$ と $\Gamma_1,\Gamma_2$ との交点のうち $M$ でない方をそれぞれ $D,E$ ,$DE$ の中点を $F$ ,$\Gamma_1$ と $\Gamma_2$ の交点を $G$ とした時,以下が成り立ちました.
$$
AM:MG=3:1,\quad AC=24,\quad CF=10
$$
この時,$BC^2$ の値を求めてください.

解答形式

例)半角数字で入力してください。

中線と垂線

kusu394 自動ジャッジ 難易度:
7月前

4

問題文

$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.

$$ AB = 12, \ \ BC= 20 $$

のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯001没問②

MrKOTAKE 自動ジャッジ 難易度:
7月前

4

問題文

三角形$ABC$の内心を$I$,直線$AI$と$BC$の交点を$D$とすると$AI=CI=CD=6 $であった. このとき$AC$の長さは正の整数$a,b $を用いて$ \sqrt{a} +b$と表せるので, $a+b$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.