$314$ 人の人が $\pi$ ナポゥ君の主催するたけのこニョッキ大会に参加します.ルールは次の通りです.
なかなか成功しないことに気づいた $\pi$ ナポゥ君は,次のように八百長をすることにしました.
このたけのこニョッキが成功するような,$313$ 人に対する正整数の与え方の場合の数が $2$ で最大何回割れるかを解答してください.ただし, $314$ 人の名付け方は固定されているものとします.
半角数字で解答してください.
この問題は、Prime Prime Prime (Hard)と一部分一致しているため、相違点を赤色で強調しています。
$n$ 桁の素数であって,すべての $i,j$ $ (1 \le i $ ≦ $ j \le n)$ において, $i$ 桁目から $j$ 桁目までが素数である数のうち,最大のものを答えてください.
例えば, $23$ は $2(i=1,j=1),3(i=2,j=2),$$23(i=1,j=2)$ が全て素数なので条件を満たします.
半角数字で解答してください.
$3×5$のマス目がたくさんあり、これを「カード」と呼びます。
いま、1以上2025以下の整数の中から異なる2つの自然数を選び、$(i,j)$(ただし$i<j$)とします。
この時、「カード」を何枚か使うことで$i×j$のマス目を以下の「条件」を全て満たすように埋めることができるような$(i,j)$の組は何通りですか。
「条件」
・マス目の中で、「カード」同士が重なっている部分が存在しないこと。
・マス目から「カード」がはみ出した部分が存在しないこと。
・マス目の中で、「カード」が置かれていない場所が存在しないこと。
半角数字で解答してください。
$\quad$鋭角三角形 $ABC$ において, $B$ を通り直線 $AC$ に平行な直線上に点 $P$ を, $C$ を通り直線 $AB$ に平行な直線上に点 $Q$ をそれぞれとると, $A,P,Q$ はすべて直線 $BC$ に関して同じ方にあり, $\angle APB=\angle AQC$ が成立した.また,三角形 $PAB$ の外接円と三角形 $QAC$ の外接円が再び交わる点を $X$ とし,直線 $PQ$ と直線 $BX,CX$ の交点をそれぞれ $R,S$ とすると,
$$\cos\angle BXC=\frac 15,CX-BX=5,XR:XS=5:3$$が成立した.さらに,線分 $BC$ の中点を $M$ ,直線 $AX$ と三角形 $PXQ$ の外接円が再び交わる点を $T$ とし,三角形 $TPQ$ の内心を $I$ とすると,直線 $AX$ と直線 $MI$ は平行であった.このとき,線分 $XI$ の長さを求めよ.
求める値の二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.
$\quad$三角形 $ABC$ において,内心を $I$ ,角 $A$ 内の傍心を $I_A$ ,外心を $O$ とすると,直線 $II_A$ と直線 $IO$ は垂直に交わった.線分 $BC$ の中点を $M$ ,線分 $II_A$ と線分 $BC$ の交点を $K$ とし,三角形 $MKI_A$ の重心を $G$ とすると, $$KM=1,KG=3$$が成立した.このとき,線分 $BC$ の長さを求めよ.
求める値の二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.
任意の自然数$i$に対して、$z_i$は$z_i^6=1$を満たす複素数である。複素数$w$について、$w= \sum_{k=1}^{100}z_k$とするとき、$w$がとりうる値の個数を求めよ。
自然数(半角入力)のみで答えてください。
半径 $1000$ の円の形をした平坦な地形の島がある。この島を訪れたトレジャーハンターのアリスは、この島のある $1$ 点 $\mathrm{T}$ の真下に宝が埋まっていることは知っているが、$\mathrm{T}$ の位置は知らない。アリスは、自分のいる地点と $\mathrm{T}$ との距離を正確に測る探知機を使って $\mathrm{T}$ にたどり着こうとしている。
はじめ、アリスは島の中心点 $\mathrm{A_0}$ にいる。この後、アリスはターン制で行動を繰り返す。$n=1,2,\ldots$ に対し、$n-1$ ターン目の行動が終わった後のアリスの位置を $\mathrm{A_{n-1}}$ とする。$n$ ターン目でアリスは以下の行動をとる:
$n$ ターン目の行動:
アリスは、今いる地点 $\mathrm{A_{n-1}}$ からちょうど距離 $1$ だけ離れた点 $\mathrm{A_{n}}$ に移動する。その後、探知機を使って線分 $\mathrm{TA}_n$ の長さ $d_n$ を正確に測る。
さて、あるターンで $d_n=0$ となった時、アリスは今いる地点の真下を掘り起こして宝を見つける。$\mathrm{T}$ の位置にかかわらず、アリスがうまく行動すれば $N$ ターン目で確実に宝を見つけることができるような正の整数 $N$ の最小値を求めよ。
半角数字のみで1行目に入力せよ。
以下の解答欄を埋めよ。
正の実数に対して定義され、実数値をとる連続関数 $f(x)$ が、任意の正の実数 $x$ に対して $$f(x^2)=f(x)+\frac{\log_2{x}}{x+1}$$
を満たしている。このとき、
$$
f(16)-f(8)=\frac{\fbox{アイ}}{\fbox{ウエオ}}
$$
である。なお、このような $f$ は確かに存在し、上記の値は一意に定まることが証明できる。
解答欄ア〜オには、それぞれ0から9までの数字が入る。
文字列「アイウエオ」を半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えること。