数学の問題一覧

カテゴリ
以上
以下

tb_lb

公開日時: 2021年1月31日22:59 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 面積

【補助線主体の図形問題 #001】
 2013年よりツイッターなどで補助線主体の初等幾何の問題を披露してきたtb_lbと申します。このたびこの「ポロロッカ」を知り、今まで作ってきた問題を再発表することを決めました。気まぐれに投稿してまいりますので、見かけた際にはどうぞよろしくお願いします。
 さて、ご挨拶代わりの1問目は易しめに抑えてみました。答えを出すだけなら代数的な処理で十分ですが、いささか面倒です。適切な補助線を引くと面倒な計算を避けることができますので、ぜひ補助線解法を考えてみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 大雑把な方針の選択肢
  2. ヒント1の続き
  3. 補助線の方針
  4. 上記のヒントを無視して強引な解法をとるなら

Kinmokusei

公開日時: 2021年1月30日22:01 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

長方形・正方形・円が図のように配置されています。赤で示した線分の長さが7、長方形の面積が12のとき、青い線分の長さとしてあり得るものを全て求めてください。

解答形式

解答は$\sqrt{\fbox {アイ}},\frac{\sqrt{\fbox{ウエオ}}}{\fbox カ}$となります。文字列「アイウエオカ」を解答してください。ただし、根号の中身が平方数の倍数とならないように解答してください。

aoneko

公開日時: 2021年1月30日17:21 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数問題 自然数

問題文

$0$でない整数$x,y,z$について$A=xy−z,B=x-yz$と定める。$A+B=3,A-B=5$となるとき、$x,y,z$の値を求めよ

Kinmokusei

公開日時: 2021年1月23日20:12 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$

aoneko

公開日時: 2021年1月20日7:48 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

一次関数 f(x) 連立方程式

問題文

一次関数$f(x)$と$g(x)$は以下を満たす
(但し$t$は定数)
$$
\begin{cases} f(x)=4x+g(t)\\
g(x)=−2x-f(t) \end{cases}
$$
$f(2)=2$のとき、$g(2)$の値を求めよ。

解答形式

自由

aoneko

公開日時: 2021年1月19日22:32 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

≪aは定数とする。xの関数f(x)に対しf(a)とは、f(x)にx=aを代入した値である。例えば、f(x)=2xが与えられれば、f(2)の値は4となる≫

f(x)=3x−1についてf(a+1)をaを用いて表せ

aoneko

公開日時: 2021年1月19日22:32 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

≪aは定数とする。xの関数f(x)に対しf(a)とは、f(x)にx=aを代入した値である。例えば、f(x)=2xが与えられれば、f(2)の値は4となる≫

f(x)=3x−1についてf(a+1)をaを用いて表せ

aoneko

公開日時: 2021年1月19日15:11 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

対数

問題文

$$
(a,M,N∈ℝ)
$$

$$
\begin{cases}p=log_{a}M・・・① \\ q=log_{M}N^{2}・・・②\end{cases}
$$
$$
(1)N=a^{p}のとき、qの値を求めなさい。
$$
$$
(2)N=pのとき、aをpとqで表すとa=p ^{◻︎}
$$
$$
⓪2pq\\ ①\frac{2}{pq}\\ ②2(p+q)\\ ③(pq)²
$$

解答形式

例)(1)q=1(2)⓪

Kinmokusei

公開日時: 2021年1月16日18:47 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$x,y,z$は全て正の実数とします。次式で定義される$f(x,y,z)$について、次の値を求めてください。$$f(x,y,z)=\frac{1+x^2}{y+z}+\frac{1+y^2}{z+x}+\frac{1+z^2}{x+y}$$
$(1)$ $f(x,y,z)$の最小値
$(2)$ $x+y+z=1$のとき、$f(x,y,z)$の最小値
$(3)$ $x^2+y^2+z^2=1$のとき、$f(x,y,z)$の最小値

解答形式

$(1)$の答えは$\fbox ア$、$(2)$の答えは$\fbox イ$、$(3)$の答えは$\fbox ウ\sqrt{\fbox エ}$です。
文字列「アイウエ」を解答してください。

zyogamaya

公開日時: 2021年1月15日18:15 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

どの辺の長さも整数である$\triangle ABC$の面積を$S$とする。$S^2$の小数部分を求めよ。

解答形式

とりうるすべての小数部分を小さい順に都度改行、列挙してください。
例:
「0,1/2,1/3,1/6,1/√5」の場合、

0
0.5
0.'3'
0.1'6'
1/\sqrt{5}

zyogamaya

公開日時: 2021年1月15日18:01 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$xy$平面上において、$A(1,0),B(1,1)$とする。中心が原点の単位円上に動点$P$、線分$AB$上に動点$Q$をとる。また、三角形$PQR$が正三角形となるように点$R$をとる。ただし、点$P,Q,R$はこの順に反時計回りに位置し、点$P,Q$がともに$(1,0)$にあるときは$R(1,0)$とする。このとき、点$R$の動きうる領域を図示し、その面積を求めよ。

解答形式

面積のみを解答してください。
答えは$\displaystyle\frac{\pi}{a}+\frac{b+\sqrt{c}}{d}$($a,b,c,d$は1桁の自然数)となりますので、センター、共通テスト形式で$a,b,c,d$を埋め、4桁の自然数「abcd」を入力してください。

zyogamaya

公開日時: 2021年1月15日17:51 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$x$に関する3次方程式$x^3+ax+b=0$($a,b$は実数)の3解の絶対値がすべて1以下となる$a,b$の必要十分条件が表す領域を$ab$平面に図示し、その面積を求めよ。

解答形式

面積の値のみを解答してください。答えは分数になるので/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7