eq_K

eq_K

統計情報

フォロー数5
フォロワー数6
投稿した問題数2
コンテスト開催数0
コンテスト参加数2
解答された数18
いいねされた数4
解答した問題数31
正解した問題数25
正解率80.6%

人気問題

Sigma Problem

eq_K 自動ジャッジ 難易度:
7月前

11

問題文

以下の値を素数 $2017$ で割った余りを解答してください。ただし、$\lfloor x\rfloor$ は $x$ 以下の最大の整数を表します。

$\displaystyle\sum_{k=1}^{2023} \left\lfloor\dfrac{3}{7}×2^k\right\rfloor(-1)^{k+1}$

解答形式

非負整数を半角で入力してください.

300G

eq_K 自動ジャッジ 難易度:
6月前

7

問題文

$4$ 点 $A,B,C,D$ は同一円周上にあり,その内部(辺上を含まない)に点 $P$ をとります.
また,線分 $AP,BP,CP,DP$ の垂直二等分線をそれぞれ $a,b,c,d$ とします.
$a,b$ の交点を $E$,$b,c$ の交点を $F$,$c,d$ の交点を $G$,$d,a$ の交点を $H$ とすると,$4$ 点 $E,F,G,H$ は同一円周上にあり,四角形 $EFGH$ の二本の対角線は $P$ で交わりました.
 そして,以下が成立しました:
$$HP=5,\quad HE=11,\quad EF=16$$
 このとき,$HG$ の長さの二乗は互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.

解答形式

非負整数を半角で入力してください.

新着問題

300G

eq_K 自動ジャッジ 難易度:
6月前

7

問題文

$4$ 点 $A,B,C,D$ は同一円周上にあり,その内部(辺上を含まない)に点 $P$ をとります.
また,線分 $AP,BP,CP,DP$ の垂直二等分線をそれぞれ $a,b,c,d$ とします.
$a,b$ の交点を $E$,$b,c$ の交点を $F$,$c,d$ の交点を $G$,$d,a$ の交点を $H$ とすると,$4$ 点 $E,F,G,H$ は同一円周上にあり,四角形 $EFGH$ の二本の対角線は $P$ で交わりました.
 そして,以下が成立しました:
$$HP=5,\quad HE=11,\quad EF=16$$
 このとき,$HG$ の長さの二乗は互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.

解答形式

非負整数を半角で入力してください.

Sigma Problem

eq_K 自動ジャッジ 難易度:
7月前

11

問題文

以下の値を素数 $2017$ で割った余りを解答してください。ただし、$\lfloor x\rfloor$ は $x$ 以下の最大の整数を表します。

$\displaystyle\sum_{k=1}^{2023} \left\lfloor\dfrac{3}{7}×2^k\right\rfloor(-1)^{k+1}$

解答形式

非負整数を半角で入力してください.

開催したコンテスト

まだ開催したコンテストがありません

参加したコンテスト

順位 コンテスト名 得点 終了日時 作成者
15 N村杯Shortlist 001 600 2024年6月9日22:40 Furina Furina pomodor_ap pomodor_ap
27 ΠMC002 100 2023年10月27日23:20 Furina Furina pomodor_ap pomodor_ap JoeFight JoeFight conan_kun conan_kun