simasima

simasima

統計情報

フォロー数1
フォロワー数17
投稿した問題数26
コンテスト開催数2
コンテスト参加数1
解答された数982
いいねされた数38
解答した問題数30
正解した問題数22
正解率73.3%

人気問題

12月前

118

問題文

パーフェクトさんすう教室 -Normal- (問題文)
さるのは答えが9になる足し算の式を自分で一つ思いついたようです。さるのの考えた足し算の式を当ててください。
ただし、さるのの考えた足し算の式が解答した文字列の(連続していなくても良い)部分文字列にあれば正解とします。

この問題は長い文字列を解答すれば正解することが出来ますが、あなたはこの問題にもっとスマートに解答したいです。
全ての 答えが9になる足し算の式 を(連続していなくても良い)部分文字列として含む長さが31の文字列を解答してください。
なお、答えが9になる足し算の式 を(連続していなくても良い)部分文字列として含む長さが30以下の文字列は存在しないことが証明できます。

例えば、答えが5になる足し算になる式として「3+2」「1+1+1+1+1」「5」などが挙げられます。
「1+2×2」や「0+1+4」や「0.5+4.5」や「-1+6」や「+3+2」や「⑨」などは足し算の式ではない事に注意してください。

足し算の式の厳密な定義 (これは全難易度で共通です)
足し算の式の各文字は1,2,3,4,5,6,7,8,9,+のいずれかで、先頭と末尾の文字は数字で、+どうしは連続しない。
その足し算の式を通常の数式として計算した結果がその足し算の式の答えになる。

解答形式 (重要)

ジャッジの都合上、特殊な解答形式になっています。
答えを改行区切りで16回連続して解答してください。「」は付けないでください。(4回 全体をコピー&ペーストすると16個になります)
必ず同じ文字列を16連続で解答してください。
解答の1行目に謎の空間が出来る事がありますが、謎の空間があっても正解判定になる事が確認されています。もし不安だったらsimasimaのXのDMに送るか質問をしてください。
例えば「129+1341398+89006」と解答したい場合は次のように解答してください。
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006

12月前

99

問題文

さるのも答えが9になる足し算の式を自分で一つ思いついたようです。さるのの考えた足し算の式を当ててください。
ただし、さるのの考えた足し算の式が解答した文字列の(連続していなくても良い)部分文字列にあれば正解とします。
例えば、「129+1341398+89006」と解答した場合、さるのの考えた足し算の式が「9」や「1+8」や「2+1+6」だった場合には正解ですが、「2+7」や「1+2+3+2+1」や「1+2+6」だった場合は不正解と判定されます。

例えば、答えが5になる足し算になる式として「3+2」「1+1+1+1+1」「5」などが挙げられます。
「1+2×2」や「0+1+4」や「0.5+4.5」や「-1+6」や「+3+2」や「⑨」などは足し算の式ではない事に注意してください。

足し算の式の厳密な定義 (これは全難易度で共通です)
足し算の式の各文字は1,2,3,4,5,6,7,8,9,+のいずれかで、先頭と末尾の文字は数字で、+どうしは連続しない。
その足し算の式を通常の数式として計算した結果がその足し算の式の答えになる。

解答形式

半角で1行で解答してください。「」は付けないでください。
例えば「129+1341398+89006」と解答したい場合は次のように解答してください。
129+1341398+89006

12月前

92

問題文

さるのは答えが9になる足し算の式を知りたいです。そのような足し算の式は沢山ありますが、そのうち一つを解答してください。(答えは複数存在しますが、どれを解答しても正解になります)

例えば、答えが5になる足し算になる式として「3+2」「1+1+1+1+1」「5」などが挙げられます。
「1+2×2」や「0+1+4」や「0.5+4.5」や「-1+6」や「+3+2」や「⑨」などは足し算の式ではない事に注意してください。

足し算の式の厳密な定義 (これは全難易度で共通です)
足し算の式の各文字は1,2,3,4,5,6,7,8,9,+のいずれかで、先頭と末尾の文字は数字で、+どうしは連続しない。
その足し算の式を通常の数式として計算した結果がその足し算の式の答えになる。

解答形式

半角で1行で解答してください。「」は付けないでください
例えば「3+2+1」と解答したい場合は次のように解答してください
3+2+1

12月前

89

問題文

全ての 答えが9になる足し算の式 を部分文字列として含む長さが31の文字列を解答するのがHard問題でしたが、さるのはこの問題の答えとしてありうる文字列が何通りあるのか気になりました。しかし、計算が面倒すぎて投げ出してしまいました。しかし、全ての 答えが 7 になる足し算の式 を部分文字列として含む長さが 22 の文字列なら何通りあるか計算できたようです。

全ての 答えが 7 になる足し算の式 を(連続していなくても良い)部分文字列として含む長さが 22 の文字列がいくつ存在するか計算してください。
なお、答えが 7 になる足し算の式 を(連続していなくても良い)部分文字列として含む長さが 21 以下の文字列は存在しないことが証明できます。

例えば、答えが5になる足し算になる式として「3+2」「1+1+1+1+1」「5」などが挙げられます。
「1+2×2」や「0+1+4」や「0.5+4.5」や「-1+6」や「+3+2」や「⑨」などは足し算の式ではない事に注意してください。

足し算の式の厳密な定義 (これは全難易度で共通です)
足し算の式の各文字は1,2,3,4,5,6,7,8,9,+のいずれかで、先頭と末尾の文字は数字で、+どうしは連続しない。
その足し算の式を通常の数式として計算した結果がその足し算の式の答えになる。

解答形式

半角で非負整数を解答してください。

みんなでかくれんぼ

simasima 自動ジャッジ 難易度:
12月前

86

「このミニゲームはWiiリモコンを縦にもって遊びます」

ミニゲームのルール

まず3人側が、それぞれ好きな所にかくれ、1人側がさがします。5回のチャンスで全員見つけたら1人側の勝ちです。
参考: https://www.youtube.com/watch?v=9gEDX_oEmZE

問題

このゲームの隠れ場所は、$b_1,a_1,a_2,a_3,a_4,a_5,a_6$ の $7$ 箇所ありますが、$b_1$ (真ん中の遊具) に隠れた場合は外から見えてしまいます。(見つけるのにチャレンジは1回使う必要がある)なので、通常は $a_1,a_2,a_3,a_4,a_5,a_6$ の $6$ つからランダムに選びます。3人は相談できず独立に隠れ場所を選ぶので同じ場所に隠れる事もあります。この時、3人側の勝率は $91/216$ になります。
このゲームで遊んでいるしましま君は間違えて$b_1$に隠れてしまいました。他の2人は $a_1,a_2,a_3,a_4,a_5,a_6$ の $6$ つから独立にランダムに選びました。1人側は最初に$b_1$を探し、その後はランダムに探します。この時の3人側の勝率を求めてください。
追記(11:06):1人側は十分賢いので、一度探した所はもう一度探しません。

解答形式

答えは既約分数で$a/b$と表せるので、$a+b$ を回答してください。

Golden Gokiburi

simasima 自動ジャッジ 難易度:
12月前

62

問題文

大変だ!Golden Gokiburi が座標 $(0,0)$ に出たぞ!
Golden Gokiburi は 一回の移動で $(x,y)$ から $(x+1,y+1)(x,y+1)(x-1,y+1)(x+1,y)(x-1,y)(x,y-1)$ の6地点のうちいずれか一つに等確率で移動します。
$(3,7)$ にいるしましま君は不安で不安で仕方がありません。
$(0,0)$ にいる Golden Gokiburi が $900$ 回移動した後の $(3,7)$ と Golden Gokiburi との距離の $2$ 乗の期待値を求めてください。

解答形式

答えは非負整数になるので半角で解答してください。

新着問題

Death Game

simasima 自動ジャッジ 難易度:
1日前

39

問題文

左から右に一列に並んだ $n$ 色のボールがあります。AliceとBobはボールを使ったデスゲームで遊ぶようです。
Aliceが先手でそれ以降は交互に手番を行います。
各手番のプレイヤーは隣り合う $2$ つのボールを選択し、その位置を入れ替えます。この時、その $2$ つのボールの組が(自分相手関係なく)過去に選ばれていた場合、全てのボールが大爆発し、手番のプレイヤーは死にます。死ななかった方が勝ちです。

例: $n=3$ の場合
最初のボールの並びを (赤,青,黄) とします。
Aliceの手番
赤と青を入れ替えました。盤面:(青,赤,黄)
Bobの手番
赤と黄を入れ替えました。盤面:(青,黄,赤)
Aliceの手番
黄と青を入れ替えました。盤面:(黄,青,赤)
Bobの手番
赤と青を入れ替えようとしますが、赤と青の組は最初のターンで選ばれています。全てのボールが大爆発し、Bobは死にました。
Aliceの勝利です。

Bobが死んでしまったのでゲームが出来なくなってしまいました...

あなたが代わりに参加して下さい。
あなたが負けた場合は全ての問題が大爆発し、得点が-5000兆点になります。
今回は $n=333$ です。あなたが先手か後手を選んでください。

解答形式

あなたが選ぶ手番を先手か後手の漢字二文字で解答してください。
この問題に不正解の判定を受けた場合、あなたのUSOMO004での得点は $-5000000000000000$ 点になります。

提出制限

この問題の提出制限は $1$ 回です。

Go to Heaven

simasima 自動ジャッジ 難易度:
1日前

32

問題文

$$\sum^{100}_{k=1}\left\lfloor \sqrt[3]{1001001-k^3}\right \rfloor$$
を $2$ で割った余りはいくつですか?

解答形式

非負整数で解答してください。

提出制限

この問題の提出制限は $1$ 回です。

連分数

simasima 自動ジャッジ 難易度:
1日前

46

問題文

正の有理数に対してスコアを次のように定義する。
有理数に対して正則連分数の数列を $[a_0;a_1,a_2,...,a_n]$とした時、$\sum^{n}_{i=0}a_i$
連分数を知らない人は下のWikipediaを見ても良いです
https://ja.wikipedia.org/wiki/%E9%80%A3%E5%88%86%E6%95%B0

例えば、$9$ のスコアは $9$ で、$\frac{7}{4}$ のスコアは $5$ で、$\frac{1}{7}$ のスコアは $7$ です。

スコアが $10$ であるような正の有理数の中で $100$ 番目に小さいものを解答してください。

解答形式

答えは互いに素な正整数 $a,b$ を用いて、$\frac{b}{a}$ と表せるので $a+b$ を解答してください。

提出制限

この問題の提出制限は $5$ 回です。

40000000001

simasima 自動ジャッジ 難易度:
1日前

37

問題文

$40000000001$ は二つの異なる素数の積で表されます。その二つの素数のうち小さい方を解答してください。

解答形式

非負整数で解答して下さい。

提出制限

この問題の提出制限は10回です。

Lie

simasima 自動ジャッジ 難易度:
1日前

52

問題文

どうやらUSOMO004においてChatGPTを利用し不正を働いた人物がちょうど1人いるらしい。容疑者は一郎、二郎、三郎、四郎、五郎、あなたの6人に絞られた。
一郎「三郎、五郎、あなたの内誰かが犯人だ。」
二郎「五郎は犯人じゃない。」
三郎「一郎は嘘をついていない。」
四郎「俺は犯人じゃない!」
五郎「俺も犯人じゃない!」
犯人の1人以外は全員本当の事を言っているはずである。
犯人は一体誰だろうか。

解答形式

犯人を漢字二文字で解答してください。自分が犯人である場合は自分と解答してください。

提出制限

この問題の提出制限は $1$ 回です。

box!box!box!

simasima 自動ジャッジ 難易度:
27日前

5

注:この問題は全完防止用問題です。この問題を解くには高度な知識が必要かもしれません。

問題文

Aの箱には白い玉が $1500$ 個 黒い玉が $500$ 個入っている。
Bの箱には白い玉が $1000$ 個 黒い玉が $1000$ 個入っている。
Cの箱には白い玉が $800$ 個 黒い玉が $1200$ 個入っている。
次のような操作を順に行う。
(1) Aの箱からランダムにボールを一つ取り出す。
(2) Bの箱からランダムにボールを一つ取り出す。
(3) Cの箱からランダムにボールを一つ取り出す。
(4) A,B,Cそれぞれの箱に残っている黒い玉の個数を $a,b,c$ とした時、$a>b$ または $b>c$ が成立した場合は操作をここで終了する。
(5) 箱に玉が一つも残っていない場合は操作をここで終了する。
(6) 操作が終了しなかった場合 (1) に戻る(取り出したボールは箱には戻さない)
操作が終了した時、箱に玉が一つも残っていない確率を求めてください。

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので $a+b$ を解答してください。

開催したコンテスト

コンテスト名 日程 作成者
USOMO004 2025-04-01 20:30
〜 2025-04-01 21:00
simasima simasima
USOMO003 2024-04-01 09:00
〜 2024-04-02 00:00
simasima simasima yozora184 yozora184

参加したコンテスト

順位 コンテスト名 得点 終了日時 作成者
3 ΠMC002 1350 2023年10月27日23:20 Furina Furina pomodor_ap pomodor_ap JoeFight JoeFight conan_kun conan_kun