Americium243

Americium243

整数と幾何と多項式好き
整数と幾何と多項式好き

統計情報

フォロー数137
フォロワー数53
投稿した問題数10
コンテスト開催数0
コンテスト参加数0
解答された数154
いいねされた数20
解答した問題数390
正解した問題数255
正解率65.4%

人気問題

約数ひっかけ問題

Americium243 自動ジャッジ 難易度:
21月前

43

問題文

注:すみません,ネタ問題です.TeXも使っていません.

任意の自然数nについて,約数の総和をp(n),約数の個数をq(n)とすると,整数の定数kを用いてp(n)=k×(q(n))と表せます.kを求めてください.

解答形式

半角の整数で解答してください.
余計な空白や改行を含まないよう注意してください.

Americium243 自動ジャッジ 難易度:
20日前

40

問題文

以下の値を求めてください.
$$\sum_{k=0}^{2026} \frac{k^2}{k^2-2026k+1013×2026}$$

解答形式

整数で解答してください

解の逆数を解とする方程式

Americium243 自動ジャッジ 難易度:
25日前

21

問題文

実数係数 $10$ 次多項式 $f(x)$ は以下を満たしている.
$$f(0)=2025$$$$f(1)=25$$

$f(x)=0$ の(重複度を込めた)$10$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{10}$ とする.
$\frac{1}{\alpha_1},\frac{1}{\alpha_2},...,\frac{1}{\alpha_{10}}$ を根にもつ実数係数 $10$ 次多項式のうち,最高次の係数が $1$ であるものを $g(x)$ としたとき,$g(1)$ を求めよ.

解答形式

求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので,$a+b$ を解答してください

14日前

17

問題文

以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします.
$$x^{100}+x^{99}+2025x+12=0$$

このとき,以下の値を求めてください.
$$\sum_{k=1}^{100} {\alpha_k}^{100}$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの14番の問題の改題です.

和②

Americium243 自動ジャッジ 難易度:
18日前

10

問題文

$\omega$ を $1$ の $3$ 乗根のうち $1$ でないものの一方とします.
$$S={\sum_{k=1}^{2026} \frac{1}{k^2+(2\omega+1)k-1}}$$
としたとき,$\left|\frac{S-1}{S}\right|$ を求めてください.

解答形式

求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので, $a+b$ を解答してください.

積分に関する整数問題

Americium243 自動ジャッジ 難易度:
39日前

6

問題文

$a,n$ を正の整数とする.
$$\int ax^ne^xdx$$
の $e^x$ の係数が $2026!$ であるような $(a,n)$ の組は何個ありますか?

解答形式

整数で解答してください

新着問題

14日前

17

問題文

以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします.
$$x^{100}+x^{99}+2025x+12=0$$

このとき,以下の値を求めてください.
$$\sum_{k=1}^{100} {\alpha_k}^{100}$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの14番の問題の改題です.

14日前

3

問題文

以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします.
$$x^3-2^{2025}x^2+24x-2^{2023}=0$$

このとき,以下の値は整数になるので,その正の約数の個数を求めてください.
$$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの31番の問題と同じです.

14日前

3

問題文

以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします.
$$x^{100}+x^{99}+2025x+12=0$$

このとき,以下の値を求めてください.
$$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの14番の問題と同じです.

和②

Americium243 自動ジャッジ 難易度:
18日前

10

問題文

$\omega$ を $1$ の $3$ 乗根のうち $1$ でないものの一方とします.
$$S={\sum_{k=1}^{2026} \frac{1}{k^2+(2\omega+1)k-1}}$$
としたとき,$\left|\frac{S-1}{S}\right|$ を求めてください.

解答形式

求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので, $a+b$ を解答してください.

Americium243 自動ジャッジ 難易度:
20日前

40

問題文

以下の値を求めてください.
$$\sum_{k=0}^{2026} \frac{k^2}{k^2-2026k+1013×2026}$$

解答形式

整数で解答してください

解の逆数を解とする方程式

Americium243 自動ジャッジ 難易度:
25日前

21

問題文

実数係数 $10$ 次多項式 $f(x)$ は以下を満たしている.
$$f(0)=2025$$$$f(1)=25$$

$f(x)=0$ の(重複度を込めた)$10$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{10}$ とする.
$\frac{1}{\alpha_1},\frac{1}{\alpha_2},...,\frac{1}{\alpha_{10}}$ を根にもつ実数係数 $10$ 次多項式のうち,最高次の係数が $1$ であるものを $g(x)$ としたとき,$g(1)$ を求めよ.

解答形式

求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので,$a+b$ を解答してください

開催したコンテスト

まだ開催したコンテストがありません

参加したコンテスト

まだ参加したコンテストがありません