soka

soka

統計情報

フォロー数1
フォロワー数1
投稿した問題数5
コンテスト開催数0
コンテスト参加数0
解答された数39
いいねされた数2
解答した問題数2
正解した問題数1
正解率50.0%

人気問題

自作2

soka 自動ジャッジ 難易度:
9月前

16

問題

$n=1,2,3...$とします。
$$6n ^5+10n^3+15n^2+29n$$を必ず割り切ることの出来る正整数として最も大きいものの値を求めてください。

解答形式

半角数字で入力してください。

自作1

soka 自動ジャッジ 難易度:
9月前

10

問題

$n$を正整数、$r$を$n$以下の非負整数として、$nCr$を$〈n,r〉$と表します。ここで、$n>2$であるとき、$$〈〈n,2〉,2〉$$が$5$の倍数とならないような$2$桁以下の正整数$n$の総和を求めてください。

解答形式

半角数字で入力してください。

自作4

soka 自動ジャッジ 難易度:
9月前

7

問題

$1〜100$の数字が書かれた$100$面のさいころを$3$回投げて出た目を順に$x,y,z$とし、$a=x+y、b=y+z、c=z+x$と定めます。このとき、不等式$$\frac{1}{2} <\frac{ab+bc+ca}{a^2+b^2+c^2} $$が成り立つ確率を求めてください。

解答形式

互いに素な非負整数$n,m$を用いて、$\frac{n}{m}$と表されるので、$n+m$の値を半角数字で入力してください。

自作3

soka 自動ジャッジ 難易度:
9月前

3

問題

$n=1,2,3...、k=0,1,2...n-1$とします。

また、不等式$$a_1<a_2<...<a_n≦n$$

を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。

ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。

解答形式

$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。
追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。
例)$nC2→n$ $2,2nCn→2n$ $n$

※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、

1の位

soka 自動ジャッジ 難易度:
6月前

3

問題

$a=2+\sqrt3$とする.
このとき
$$a^{2025}+a^{2023}+...+a^3+a$$の$1$の位を求めよ.

解答形式

半角数字で解答してください

新着問題

1の位

soka 自動ジャッジ 難易度:
6月前

3

問題

$a=2+\sqrt3$とする.
このとき
$$a^{2025}+a^{2023}+...+a^3+a$$の$1$の位を求めよ.

解答形式

半角数字で解答してください

自作4

soka 自動ジャッジ 難易度:
9月前

7

問題

$1〜100$の数字が書かれた$100$面のさいころを$3$回投げて出た目を順に$x,y,z$とし、$a=x+y、b=y+z、c=z+x$と定めます。このとき、不等式$$\frac{1}{2} <\frac{ab+bc+ca}{a^2+b^2+c^2} $$が成り立つ確率を求めてください。

解答形式

互いに素な非負整数$n,m$を用いて、$\frac{n}{m}$と表されるので、$n+m$の値を半角数字で入力してください。

自作3

soka 自動ジャッジ 難易度:
9月前

3

問題

$n=1,2,3...、k=0,1,2...n-1$とします。

また、不等式$$a_1<a_2<...<a_n≦n$$

を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。

ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。

解答形式

$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。
追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。
例)$nC2→n$ $2,2nCn→2n$ $n$

※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、

自作2

soka 自動ジャッジ 難易度:
9月前

16

問題

$n=1,2,3...$とします。
$$6n ^5+10n^3+15n^2+29n$$を必ず割り切ることの出来る正整数として最も大きいものの値を求めてください。

解答形式

半角数字で入力してください。

自作1

soka 自動ジャッジ 難易度:
9月前

10

問題

$n$を正整数、$r$を$n$以下の非負整数として、$nCr$を$〈n,r〉$と表します。ここで、$n>2$であるとき、$$〈〈n,2〉,2〉$$が$5$の倍数とならないような$2$桁以下の正整数$n$の総和を求めてください。

解答形式

半角数字で入力してください。

開催したコンテスト

まだ開催したコンテストがありません

参加したコンテスト

まだ参加したコンテストがありません