正整数に対して定義され非負整数値をとる関数 $f$ が以下を満たしています.
任意の正整数 $x,y$ について $f(xy)=f(x) \oplus f(y)$
$x$ と $y$ が互いに素ならば $f(xy)=f(x)+f(y)$
このような関数 $f$ について,以下を満たす正整数の組 $(x,y)$ の個数を $c(f)$ とします.$c(f)$ がとりうる値は有限個なので,その総和を解答してください.
$x,y$ はともに $30^{10}$ の約数である.
$f(xy)=f(x)+f(y)$
追記: $\oplus$ はビットごとの排他的論理和です
平方因子を持たない正整数 $n$ であって,$\dfrac{\phi(n)}{\gcd(n,\phi(n))} = 18$ を満たすものの総和を解答してください.
$30$ の正の約数を並べ替えた数列 $A$ としてありうるもの全てに対する,以下の操作方法の個数の総和を解答してください.
$S=\lbrace 0,1, \ldots , 30 \rbrace$ とします.関数 $f:S \rightarrow S$ であって,以下を満たすようなものの個数を $N$ とします.
$N = a \cdot b^c$ であるような正整数 $a,b,c$ について,$a+b+c$ の最小値を解答してください.
正整数 $a$ に対して,$\dfrac{n(n+2)}{a}$ が平方数であるような正整数 $n$ が無限に存在しました.さらに小さい方から $i$ 番目のものを $n_i$ とすると,任意の正整数 $i$ が $n_{i+2}+n_{i}=98n_{i+1}+2n_1$ を満たしました.このとき,$a$ としてありうるものの総和を解答してください.
$\dfrac{51-n}{n-1}$ が平方数となるような整数 $n$ の総和を解答してください.
(13:17追記 $0$ も平方数に含むとします)
上から $i$ 段目 $(1 \leq i \leq 2026)$ に $i$ 個の正整数を並べて三角形を作る方法であって,どの段も総和が $2026$ となるようなものの個数を素数 $2029$ で割ったあまりを解答してください.
正三角形 $ABC$ の内部を以下のように歩く移動するペンギンがいる.
・ 常に直進するが,辺(頂点を除く)にぶつかった場合は,辺に対して今移動してきた直線と対称な直線へ方向転換する.頂点についた場合,その時点で歩行をやめる.
また,$0\leq p \leq 1$を満たす実数 $p$ に対して,$f(p)$を以下のように定める.
・$f(p)$は,$AC$ を $p:1-p$ に内分する点を $D$ とし,このペンギンがはじめ $B$ にいて、$D$ に向かって直進したときの,ペンギンの歩行が止まるまでに辺(頂点を除く)にぶつかった回数
正整数 $n$ に対して,$f(p)=n$ を満たす $p$ の総和が $9$ であったとき,$n$ としてありうる値の総積を求めてください.
非負整数を半角英数字で解答してください.
実数係数多項式で次数が $9999$ 以下の $P(x)$ について,$(P(1),P(2), \dotsc P(10000))$ が $(1,2, \dotsc 10000)$ の並べ替えであるとき,$P(10001)$ が考えられる最大値をとるような $P(x)$ の個数を素数 $9973$ で割ったあまりを解答してください.
半角数字で解答してください.
$30$ 人の人が $\pi$ ナポゥ君の主催するたけのこニョッキ大会に参加します.ルールは次の通りです.
なかなか成功しないことに気づいた $\pi$ ナポゥ君は,次のように八百長をすることにしました.
このたけのこニョッキが成功するような,$30$ 人に与えられる正整数の総和の最小値を解答して下さい.
半角数字で解答してください.