sulippa

sulippa

高1 数検準1級、jmo予選通過点獲得(理論値)、得意分野:数IA・微積分・極限
高1 数検準1級、jmo予選通過点獲得(理論値)、得意分野:数IA・微積分・極限

第3問

sulippa 採点者ジャッジ 難易度:
1日前

0

問題文

設問3
正四面体の4つの頂点を A, B, C, D とする。点Pは、1ステップごとに、現在いる頂点と辺で結ばれた他の3つの頂点のいずれかに等確率(それぞれ確率 $1/3$)で移動する。最初に点Pは頂点Aにいるものとする。
$n$ 回移動後に点Pが頂点Aにいる確率 $a_n$ を求めよ。

解答形式

第8問

sulippa 採点者ジャッジ 難易度:
1日前

2

設問8

正の数からなる数列 ${a_n}$ が $a_1 > 0$ および漸化式 $a_{n+1} = a_n + \frac{1}{a_n^2}$ ($n \ge 1$) を満たすとき、極限値 $\lim_{n \to \infty} \frac{a_n}{\sqrt[3]{3n}}$ を求めよ。


解答形式

第9問

sulippa 採点者ジャッジ 難易度:
1日前

1

設問9

数列 ${a_n}$ ($a_n \in {0,1,2,3,4}$) が $a_1=1, a_2=1$ および漸化式 $a_{n+2} \equiv a_{n+1} + a_n \pmod{5}$ ($n \ge 1$) を満たすとする。$a_{2025}$ の値を求めよ。

解答形式

例)ひらがなで入力してください。

第2問

sulippa 採点者ジャッジ 難易度:
1日前

0

問題文

設問2
容器Aには食塩 $X_0 = 10$g を含む食塩水が全量 $M_A = 100$g、容器Bには食塩 $Y_0 = 60$g を含む食塩水が全量 $M_B = 200$g 入っている。1回の操作として、以下の(i), (ii)を順に行う。
(i) 容器Aから $50$g の食塩水を取り出して容器Bに移し、よく撹拌する。
(ii) 容器Bから $50$g の食塩水を取り出して容器Aに移し、よく撹拌する。
$n$ 回の操作が終了した後の容器A, B内の食塩の質量をそれぞれ $X_n, Y_n$ とする。$X_n$ および $Y_n$ を求めよ。

解答形式

例)ひらがなで入力してください。

第10問

sulippa 採点者ジャッジ 難易度:
1日前

1

問題文

数列 ${a_n}$ ($n \ge 0$) が、初期値 $a_0 = 3$ および以下の漸化式で定義されるとする。
$$a_{n+1} = a_n^2 - 2 \quad (n \ge 0)$$
この数列の一般項 $a_n$ を求めよ。
ただし、黄金比を$Φ$とする。


解答形式

例)ひらがなで入力してください。

第1問

sulippa 採点者ジャッジ 難易度:
1日前

1

設問1

数列 ${a_n}$ が $a_1 = 1, a_2 = 4$ および漸化式 $a_{n+2} - 4a_{n+1} + 4a_n = n \cdot 2^n$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。

解答形式

半角1スペースで答えのみ

第4問

sulippa 採点者ジャッジ 難易度:
1日前

1

設問4

数列 ${a_n}$ が $a_0=1, a_1=0, a_2=-1$ および漸化式
$$ a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 2^n \quad (n \ge 0) $$
を満たす。一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。

第5問

sulippa 採点者ジャッジ 難易度:
1日前

0

設問5

数列 ${a_n}$ が $a_1 = 2$ および漸化式 $a_{n+1} = \frac{a_n^2+2}{2a_n}$ ($n \ge 1$) を満たすとする。
一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。

第6問

sulippa 採点者ジャッジ 難易度:
1日前

1

問題文

設問6

数列 ${a_n}$ が $a_1 = \sin^2 \alpha$ ($0 < \alpha < \frac{\pi}{2}$) および漸化式 $a_{n+1} = 4a_n(1-a_n)$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。

第7問

sulippa 採点者ジャッジ 難易度:
1日前

0

設問7
数列 ${a_n}$ が $a_1 = 0, a_2 = 1$ および漸化式
$$ (n+1)a_{n+2} - (3n+2)a_{n+1} + 2na_n = 0 \quad (n \ge 1) $$
を満たす。一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。

ルジャンドルの定理(改)

sulippa 自動ジャッジ 難易度:
4日前

0

問題文

$m!$ を正整数 $m$ の階乗とする。$n \ge 2$ なる整数 $n$ に対し、$m!$ の $n$ 進法表記における末尾の連続する $0$ の個数を $Z_n(m!)$ とする。
正整数 $k$ に対し、$Z_n(m!) = k$ を満たす最小の正整数 $m$ を $M(n, k)$ と定義する(存在しない場合は $M(n, k) = \infty$)。

素数 $p$ について、$M(p, k_1) = p^2$ を満たす正の整数 $k_1$ と、$M(p^2, k_2) = p^3$ を満たす正の整数 $k_2$ を考える。
$k_1 + k_2 = 21$ となる素数 $p$ の値をすべて求めよ。

解答形式

半角で1スペースおきにお願いします
最初は空けなくていいです

ルジャンドルの定理

sulippa 自動ジャッジ 難易度:
4日前

3

問題文

$n$ を $2$ 以上の整数、$k$ を正の整数する。
$m$ の階乗を $m!$ とし、$m!$ を $n$ 進法で表したとき、末尾に連続して並ぶ $0$ の個数を $Z_n(m!)$ とする。
$Z_n(m!) = k$ を満たす最小の正の整数 $m$ を $M(n, k)$ とする。(そのような $m$ が存在しない場合、$M(n, k) = \infty$ とする。)
問:
$p$ を $5$ 以上の素数とする。
$A_p = M(p, p-1)$ と定義する。
このとき、
$$M(A_p, k_0) = p^3 - p^2$$
を満たす正の整数 $k_0$ が一意に存在するような、最小の素数 $p$ を求めよ。
また、対応する $k_0$ の値を答えよ。

解答形式

$p,k_0$をこの順に半角1スペースおきに書いてください。

三角形の面積の最小値

sulippa 自動ジャッジ 難易度:
5日前

0

問題文

△ABCで、内接円の半径を$r$とする。
$tanA=1/k,a=4k,r=k$
のとき、△ABCの面積の最小値を求めよ。

解答形式

半角数字の既約分数で1行目に分子、2行目に分母を書いてください、整数の場合も分母を1としてください。

整数問題

sulippa 採点者ジャッジ 難易度:
7日前

4

問題文

素数 $p$ と正の整数 $n$ が、以下の等式を満たすとします。
$$\frac{n^2+np+p^2}{n+p} = 2p-1$$
このような組 $(n,p)$ を全て求めてください。

解答形式

解が有限個であるとされた場合は、全ての解と、それ以外に解が存在しないことの証明を、簡単で構わないのでお願いします。無限個とされた場合は証明いらないので、何らかの形で解を表してください。証明に完全性がないと見なした場合は、採点機能がない都合上、99点をあげたいところも不正解とさせていただきます

原始ピタゴラス数

sulippa 自動ジャッジ 難易度:
7日前

2

問題文

互いに素な整数の辺 $a,b,l$(斜辺 $l$)を持つ直角三角形を考える。内接円の半径を $r$、周長を $L$、面積を $S$ とする。
$L^2=kS$ ($k$ は正の整数) を満たすとき、
全てのkの値を求めよ。

解答形式

半角1スペースおきに小さい順に並べてください

階乗のシグマと合同式

sulippa 自動ジャッジ 難易度:
8日前

2

問題

$p$を$3$より大きい素数とする
$S=\sum_{k=1}^{p-2} k \cdot (k!) \cdot ((p-k-1)!)$ 
を$p$で割った余りを求めよ。

解答形式

解答は既約分数で表せるので、
1行目に分子、
2行目に分母
を半角で書いてください
分母は1になる場合も書いてください

不等式の証明(解説あり)

sulippa 採点者ジャッジ 難易度:
11日前

0

問題文

$0.017$$<$$tan1°$$<$$0.018$
を示せ。

解答形式

大学数学なし
自己流ですが、解説を付けているのでぜひ挑戦してみてください

整数問題 解説あり

sulippa 自動ジャッジ 難易度:
11日前

3

問題文

$p$ を $p \ge 5$ なる素数とする。集合 $G_p = {1, 2, \dots, p-1}$ の部分集合 $S$ が自己双対的であるとは、
$$a \in S \implies a^{-1} \pmod p \in S \quad \text{かつ} \quad a \in S \implies p-a \in S$$
が全ての $a \in S$ に対して成り立つことと定義する(ここで $a^{-1}$ は $\pmod p$ における $a$ の乗法逆元)。

$N_p$ を、$G_p$ の自己双対的な部分集合 $S$ の総数とする(空集合 $\emptyset$ も含む)。

$N_p = 32$ となるような素数 $p$ ($p \ge 5$) をすべて求めよ。


解答形式

解を半角1スペースおきに小さい順に並べてください