太郎君は次のルールで行動する: 前日に花子さんで抜いた場合、次の日に抜く確率は$\frac{1}{5}$ 前日に花子さんで抜かなかった場合、次の日に抜く確率は$\frac{2}{3}$ 今日花子さんで抜かなかったとき$n$日後に抜く確率を$P_n$とする。 $n \to \infty$のときの$P_n$を、小数点5位を四捨五入して、小数点4位まで求めよ。
答えのみ記入
2022^2022を10で割った余り。
どうやってといたかもかいてね。 ひらがなでいいよ。 これはさんすうだからね。
「$L^\infty$空間の双対」
区間$[0,1]$上のルベーグ可測かつ本質的に有界な実数値関数の空間$L^\infty([0,1])$において、その双対空間$(L^\infty)^*$が$L^1([0,1])$と同型でないことを示せ
例)証明してください。
f(θ)=−cotθ(1+cot⁻²θ)cos²θsinθ{tanθ−(4sin²θ+4cos²θ)(sinθcosθtanθcotθ)}⇔f(θ)=sinxθである。 xを求めよ。
途中式を最小限必ず書く。
f(θ)=−cotθ(1+cot⁻²θ)cos²θsinθ{tanθ−(4sin²θ+4cos²θ)(sinθcosθtanθcotθ)}⇔f(θ)=sinxθである。 xの値を(x-1)進数で表せ。
いきなり答えはNG。途中式も最小限必ず書く。
自然数nを用いた素数2^n+5^(n+1)は存在するか。
証明する形式。
与式を因数分解せよ。x^6 - 41x^5 + 652x^4 - 5102x^3 + 20581x^2 - 40361x + 30030
因数分解された式のみ回答