OooPi

OooPi

TMC001(D)

OooPi 自動ジャッジ 難易度:
11日前

7

正整数 $a,b$ であって以下が整数になるようなすべての組 $(a,b)$ について $ab$ の総和を求めてください
$$
\frac{(3ab+2a+4b-6)^2}{13(a^2b^2+a^2+4b^2+4)}
$$

TMC001(C)

OooPi 自動ジャッジ 難易度:
11日前

16

$100\times100$ のマス目に $1,2,3$ のどれかの数字をそれぞれ書き込む方法は $3^{10000}$ 通りありますが,そのうちどの $3\times3$ マスを選んでも縦横斜め $3$ マスの数字の総和が $3$ の倍数になるような書き込み方は何通りありますか。ただし,回転や反転して一致するものも異なるものとして数える。

TMC001(F)

OooPi 自動ジャッジ 難易度:
11日前

12

問題文

以下の式の値を $1000$ で割った余りを答えよ
$$
47!\sum_{k=1}^{45}\
\frac{2k^{3}+7k^{2}+5k-3}{(k+2)!}
$$

解答形式

正整数で回答してください

TMC001(H)

OooPi 自動ジャッジ 難易度:
11日前

11

問題文

正整数列 $A_{n}$ を以下のように定義する
$$
1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい
$$  この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の
総和を $97$ で割った余りを答えてください。
  ただし,並び替えて一致するものも別々として数える。
例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。

解答形式

正整数で答えてください