全問題一覧

カテゴリ
以上
以下

TMC001(F)

OooPi 自動ジャッジ 難易度:
37日前

12

問題文

以下の式の値を $1000$ で割った余りを答えよ
$$
47!\sum_{k=1}^{45}\
\frac{2k^{3}+7k^{2}+5k-3}{(k+2)!}
$$

解答形式

正整数で回答してください


問題

+1, -1, ×1, ÷1がそれぞれ書かれた4種類のカードがそれぞれ十分な枚数あります。
今、$a_{0}=1$として、毎回1枚のカードを引き、$a_{n+1}$を$a_{n}$に対してそのカードに書かれた操作をすることによって定めます。ただし、nは非負整数です。
例えば、+1、+1、×1の順でカードを引いた時、$a_{0}=1$、$a_{1}=2$、$a_{2}=3$、$a_{3}=3$となります
10回の操作後、$a_{10}=1$となるようなカードの引き方の総数を求めてください。

解答形式

非負整数のみで回答してください