mathken

mathken

作問初心者です
作問初心者です

正六角形の面積比

mathken 自動ジャッジ 難易度:
5日前

4

問題文

網掛けになっている小さい正六角形と大きい正六角形の面積比は、互いに素な自然数 $a,b$ を用いて $a:b$ と表せます。 $a+b$ の値を答えてください。

整数問題1

mathken 自動ジャッジ 難易度:
16日前

18

問題文

自然数 $a,b,c$ が互いに異なる自然数であるとき
$$N=(9a-1)^2+9b^2+9c^2=(9a+1)^2-9b^2-9c^2$$と表される自然数 $N$ の最小値を求めよ。

整数問題3

mathken 自動ジャッジ 難易度:
16日前

9

問題文

以下の等式を満たす自然数 $a,b,c$ の組を全て求めよ。
$$a^b(c-1)+a+c=2^{bc-1}-a-b=2026$$

解答形式

$a,b,c$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。


1,2,3
12,34,56

整数問題2

mathken 自動ジャッジ 難易度:
16日前

12

問題文

以下の二つの等式を満たす自然数 $a,b,c$ の組を全て求めよ。
$$\begin{cases} a-b=3c \\ a^3-b^3-c^3=c^5 \end{cases}$$

解答形式

$a,b,c$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。


1,2,3
12,34,56

整数問題4

mathken 自動ジャッジ 難易度:
16日前

8

問題文

$0<m<n$ とする。以下の等式を満たす自然数 $m,n$ を全て求めよ。
$$\frac{(m+n-1)^4-(m+n-2)^4+m-n+1}{4(m+n-1)+m-n}=2026$$

解答形式

$m,n$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。


1,2
12,34

n進数

mathken 自動ジャッジ 難易度:
16日前

7

問題文

$n>10$ とする。
$n$ 進法で $2026_{(n)}$ と表される自然数が $2026$ で割り切れるような自然数 $n$ を小さいものから $3$ つ足し合わせた数を答えよ。

必要なら $1013$ は素数であること、 $m^2 \equiv 937 \pmod {1013}$ を満たす $1013$ 以下の自然数 $m$ は $2$ つのみで、その $1$ つが $472$ であることを用いてよい。

計算問題

mathken 自動ジャッジ 難易度:
16日前

19

問題文

$$\frac{2^{22}-22^2-4-44^4}{2 \times 22+4 \times 44}= \space ?$$$?$ に入る自然数を答えよ。

16日前

24

問題文

$2025^{2026}+2026^{2025}$ について以下の問いに答えよ。

$(1)$ $625$ で割った余りを求めよ。

$(2)$ 下 $4$ 桁の数を求めよ。

解答形式

答え二つを半角カンマ(,)で区切って答えてください。
例)123,456

追記:解答を修正しました。答えが合っているのに誤答判定された方は申し訳ございません。

四面体

mathken 採点者ジャッジ 難易度:
19日前

0

問題文

四面体 $ABCD$ の各辺 $AB , AC , AD , CD , DB , BC$ の中点をそれぞれ $P , Q , R , S , T , U$ とする。四角形 $PQST , QRTU$ がともに長方形となるとき、
$AB^2+CD^2=AC^2+DB^2=AD^2+BC^2$
となることを示せ。

解答形式

簡単な証明をお書きください。

素因数分解

mathken 自動ジャッジ 難易度:
20日前

4

問題文

$n$ を自然数とする。 $n^5+n+1$ が互いに異なる $4$ つの素数の積で表されるような $n$ のうち最小のものを答えよ。

魔法陣

mathken 自動ジャッジ 難易度:
20日前

4

問題文

実数 $a,b,c$ がこの順に等差数列となっている。 $3\times3$ のマス一つずつに $a,b,c$ を自由に配置したとき、縦横斜め一列に並ぶ $3$ 数の和が一致する列の組が必ず存在するか。

解答形式

必ず存在するならば $1$ 、必ずしも存在しないならば $0$ と答えてください。

級数

mathken 採点者ジャッジ 難易度:
20日前

0

問題文

各桁が奇数のみで表される自然数の逆数からなる級数
$\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{31}+\cdots$
の和を $S$ とすると、
$\sum\limits_{n=1}^{10} \frac{1}{n} < S < 2 \sum\limits_{n=1}^{5} \frac{1}{2n-1}$
となることを示せ。

余りを求める

mathken 自動ジャッジ 難易度:
20日前

7

問題文

$86^{48}-64$ を $864$ で割った余りを求めよ。

互いに接する3円と直線の問題

mathken 自動ジャッジ 難易度:
20日前

0

問題文

$3$ つの円が互いに外接し、かつ各円が直線 $l$ に接している。ある円と直線 $l$ との接点を $O$ とし、他の $2$ 円との接点をそれぞれ $A$ $,$ $B$ とする。 $O$ から直線 $AB$ に下ろした垂線の足を $H$ とする。線分 $AB$ の長さを $d$ として、線分 $OH$ の長さを $d$ を用いて表せ。