$2025^{2026}+2026^{2025}$ について以下の問いに答えよ。
$(1)$ $625$ で割った余りを求めよ。
$(2)$ 下 $4$ 桁の数を求めよ。
答え二つを半角カンマ(,)で区切って答えてください。
例)123,456
追記:解答を修正しました。答えが合っているのに誤答判定された方は申し訳ございません。
各桁が奇数のみで表される自然数の逆数からなる級数
$\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{31}+\cdots$
の和を $S$ とすると、
$\sum\limits_{n=1}^{10} \frac{1}{n} < S < 2 \sum\limits_{n=1}^{5} \frac{1}{2n-1}$
となることを示せ。
$3$ つの円が互いに外接し、かつ各円が直線 $l$ に接している。ある円と直線 $l$ との接点を $O$ とし、他の $2$ 円との接点をそれぞれ $A$ $,$ $B$ とする。 $O$ から直線 $AB$ に下ろした垂線の足を $H$ とする。線分 $AB$ の長さを $d$ として、線分 $OH$ の長さを $d$ を用いて表せ。