PGC005 (C)

pomodor_ap 自動ジャッジ 難易度: 数学 > 競技数学
2024年11月21日21:00 正解数: 20 / 解答数: 31 (正答率: 64.5%) ギブアップ数: 0
この問題はコンテスト「PGC005」の問題です。

問題文

$AB=5, AC=7$ なる三角形 $ABC$ について,$A$ から $BC$ に下ろした垂線と円 $ABC$ の交点を $D(\neq A)$,$BC$ の中点を $M$ とします.$\angle AMD=90^{\circ}$ であるとき,$BC$ の長さの四乗を求めてください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

PGC005 (B)

pomodor_ap 自動ジャッジ 難易度:
12日前

34

問題文

$BC=123, \angle B=90^{\circ}$ なる三角形 $ABC$ について,内心を $I$,$\angle A$ 内の傍心を $J$ とすると,四角形 $ABIC$ は三角形 $BCJ$ よりも面積が $246$ 大きくなりました.$AB$ の長さを求めてください.

PGC005 (A)

pomodor_ap 自動ジャッジ 難易度:
12日前

44

問題文

$BC=18$ かつ面積が $162$ なる三角形 $ABC$ について,重心を $G$,$G$ から $BC$ に下ろした垂線の足を $P$ とすると,三角形 $PGC$ の面積が $30$ となりました.$AC$ の長さの二乗を求めてください.

PGC005 (D)

pomodor_ap 自動ジャッジ 難易度:
12日前

10

問題文

$AB<AC$ なる三角形 $ABC$ について,$C$ を通り $B$ で直線 $AB$ に接する円 $\gamma$ と線分 $AC$ の $C$ でない交点を $D$,$D$ を通り $A$ で直線 $AB$ に接する円 $\omega$ と $\gamma$ の $D$ でない交点を $E$ とします.いま,三角形 $ABC$ の外心を $O$ とすると,$$OD=OE, DE=2, BC=11$$ が成り立ちました.線分 $AC$ の長さの二乗を求めてください.

bMC_C

bzuL 自動ジャッジ 難易度:
4月前

31

問題文

凸五角形 $ABCDE$ は以下を満たします.
$$
\begin{cases}
AB=BC=CD=DE \\\\
2\angle{BAE} = \angle{CBA}\\\\
2\angle{ECA} = \angle{AEC} = \angle{BAE} + 30^{\circ}
\end{cases}
$$
このとき,互いに素な正整数 $a,b$ を用いて $\angle{EDB}=\bigg(\dfrac{a}{b}\bigg)^{\circ}$と表すことができるので,$a+b$ を答えてください.

解答形式

半角数字で解答してください.

B

nmoon 自動ジャッジ 難易度:
31日前

29

問題文

3種類の文字 $A,B,C$ を用いて以下の条件を満たした長さが5の文字列は全部でいくつあるか.

  • $A$ の右隣にある文字は $B$ ではない.

  • $B$ の右隣にある文字は $C$ ではない.

解答形式

非負整数で解答して下さい.

KOTAKE杯(Q)

MrKOTAKE 自動ジャッジ 難易度:
4月前

22

問題文

AB=15, AC=24の鋭角三角形ABCがあり内心をI, 垂心をHとすると
4点BCHIは同じ円Γ上にあった.このとき円Γの半径の長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

A

nmoon 自動ジャッジ 難易度:
31日前

32

問題文

2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.

解答形式

非負整数で解答してください.

bMC_D

bzuL 自動ジャッジ 難易度:
4月前

46

問題文

非負実数 $x,y,z$ が $x+y+z=1$ を満たすとします.
$$
x^{5001}y^{5002} + y^{5001}z^{5002} +z^{5001}x^{5002}
$$
の最大値は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができます.$a+b$ を素数 $4999$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

KOTAKE杯(N)

MrKOTAKE 自動ジャッジ 難易度:
4月前

25

問題文

△ABCの外心をOとする. AOを直径とする円とAB, ACの交点のうちAでないものを
それぞれD,EとするとDE=3, CD=5であり四角形BCEDは内接円を持ちました.
このとき△ABCの面積を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(L)

MrKOTAKE 自動ジャッジ 難易度:
4月前

29

問題文

AB=30, AC=36の△ABCがあり線分BC上にBDECの順に並びBD:DE:EC=1:5:3となるよう
点D,Eをとると,線分ABとACに接し点D,Eを通る円が存在した.
このときBCの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

bMC_B

bzuL 自動ジャッジ 難易度:
4月前

38

問題文

$728^{(729^{730})} + 730^{(729^{728})}$ は $3$ で最大何回割れますか.

解答形式

半角数字で解答してください.

KOTAKE杯(P)

MrKOTAKE 自動ジャッジ 難易度:
4月前

46

問題文

AB=36, AC=24の△ABCがあり線分ABを1:2に内分する点D, 線分ACを3:1に
内分する点EをとりBEとCDの交点をPとするとAP=14であった.
このときBCの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.