$(x,y)$を$x^2+y^2=1,x\geqq0,y\geqq0$を満たすようにとる。 $z=(x,y)\cdot(\frac1{\sqrt2},\frac1{\sqrt2})$としたとき、以下の値を求めよ。 $$\int_0^1zdx$$
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
この問題には、必ず最初に解答をしてください。 解答はどんなものでも構いません。もし迷った際は、以下の文章をコピーペーストしても構いません。 「生命、宇宙、そして万物についての究極の疑問の答えは42です」 最初に解答されなかった場合、以降の解答は無効となります。
数列${a_n}$を以下のように定義する。 $$ \begin{eqnarray} a_1&=&\int_0^1dx\\ a_{n+1}&=&\int_0^{a_n+1}x^{a_n}dx \end{eqnarray} $$ このとき、$\log_{10}(a_5)$の値を求めよ。
次の値を小数第2位まで答えよ。 $$\int_0^1\frac{1}{2\pi}e^{-\frac{x^2}2}dx$$ ただし必要ならば以下のリンクを使ってもよい。 https://ja.wikipedia.org/wiki/正規分布#正規分布表
$$\int^1_0\int^{\sqrt{1-z^2}}_0\sqrt{1-z^2-y^2}dydz$$
$a$は$x$と独立であるとする。 $x$の方程式 $$(\cos^4x)^{\log_2(a\sin x)+1}=(a\sin2x)^{\log_2(a\sin2x)}$$ の$0\leqq x\leqq \frac\pi2$における解を$y$とする。 この時、以下の値を求めよ。 $$\int_0^1\frac1{\sin^2y}da$$
$$\int^2_0[2^x]dx$$ ただし[]はガウス記号
$$\int_{-\sqrt{2}}^{\sqrt{2}}(5^x-5^{-x})dx$$
$$\int-\frac1{x^2}dx$$
$$\int^\sqrt2_{-\sqrt2}\sin x\cos x\{\tan x+\tan{(\frac{\pi}{2}-x)}\}dx$$
△ABC(AB<AC)の垂心をH、外心をOとし、直線HOと辺AB,BCの交点をD,Eとし、点Eは線分BCを3:1に内分している。このとき、AD/DBの値を求めなさい。ただし、Bの側からD,H,O,Eの順に位置している。
互いに素な正の整数a,bを用いて、b/aの形で答えてください。 解答には AD/DB=b/aと答えてください。
この問題は、コンテスト機能のテストをするために投稿します。大喜利でもどうぞ。 $$2+2=?$$
$f(x)$を$x$の小数部分とする。 以下の値を求めよ。 $$\int^{25}_0f(\sqrt{x})dx$$