SKG学院では$5×5$のマス目を使い,とあるゲームが行われている.
ゲームのルールは以下の通り.
・お客さんと生徒がじゃんけんをする.勝った方が先手,負けた方が後手となる.
この時あいこは考えないものとする.
・先手は黒の碁石,後手は白の碁石をマスの上に交互に置いていく.
・同じマスには碁石は一つまでしか置けない.
・マス目が全て埋まった時,各行について次の条件を満たすものを特別な行と呼び,その個数を数える.
特別な辺:ある行の$5$マスを見た時お客さんが置いた碁石の個数が偶数個であるもの.
・特別な行の個数が偶数であればお客さんの勝ち,奇数であれば生徒の勝ちとなる.
お客さんが勝つ確率を$A$,お客さんが勝つ時の碁石の置き方の総数を$B$とする.
$A×B$の値を求めなさい.
但し回転して重なるような碁石の置き方は区別しないとする.
半角数字で入力して下さい.
この問題を解いた人はこんな問題も解いています