E. 更に分割

G414xy 自動ジャッジ 難易度: 数学 > 競技数学
2024年10月1日21:00 正解数: 2 / 解答数: 8 (正答率: 25%) ギブアップ不可
この問題はコンテスト「G4x4MC (x=1)」の問題です。

全 8 件

回答日時 問題 解答者 結果
2024年10月1日21:51 E. 更に分割 Nyarutann
正解
2024年10月1日21:40 E. 更に分割 ISP
不正解
2024年10月1日21:40 E. 更に分割 ISP
不正解
2024年10月1日21:39 E. 更に分割 ISP
不正解
2024年10月1日21:22 E. 更に分割 ISP
不正解
2024年10月1日21:21 E. 更に分割 ISP
不正解
2024年10月1日21:21 E. 更に分割 ISP
不正解
2024年10月1日21:07 E. 更に分割 arararororo
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

F. 4分割

G414xy 自動ジャッジ 難易度:
6月前

55

問題文

$(0,0),(4,0),(0,4),(4,4)$を頂点とする正方形を、頂点が全て格子点上にある三角形4つに分割する方法はいくつありますか。
回転や裏返しをして同じ形になるものも区別するものとします。

解答形式

半角数字で入力してください。

D. ループ

G414xy 自動ジャッジ 難易度:
6月前

75

問題文

4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか?
但し、「ループの一部分である」とは、
全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。

解答形式

半角数字で入力してください。

C. 地雷

G414xy 自動ジャッジ 難易度:
6月前

13

問題文

4x4のマス目のうち、0個以上のマスを選んで1つずつ地雷を置き、すべてのマスに周囲8マス(自身を含まない)の地雷の数を書きます。
地雷を置くすべてのパターンにおいて書かれている数字の総和を求めてください。

解答形式

半角数字で入力してください。

B. 8分割

G414xy 自動ジャッジ 難易度:
6月前

18

問題文

4x4のマス目を1x2のタイル8枚で敷き詰める方法は何通りありますか?

解答形式

半角数字で入力してください。

連続する整数の積

noname 自動ジャッジ 難易度:
46日前

7

$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。

解答形式

$n$の値を半角で入力してください。

A. 14分割

G414xy 自動ジャッジ 難易度:
6月前

8

問題文

4x4のマス目を境界線で区切り、14分割する方法は何通りありますか?

解答形式

半角数字で入力してください。

abc (大数宿題2024-2)

Lim_Rim_ 自動ジャッジ 難易度:
5日前

1

問題文

$\sqrt[abc]{a! + b! + c!}$が整数となるような正の整数の組$(a,b,c)$をすべて求めよ.

解答形式

すべての組に対する $a+b+c$ の値の総和を解答してください。論証は解説を参照してください。

整数

kiriK 自動ジャッジ 難易度:
5月前

22

$自然数Xについて、Xの各位の数字を足し合わせた値をk(X)とおく。$
$4桁の自然数A,Bにおいて$$$
\begin{eqnarray}
\frac{k(A)}{k(B)}=\frac{A}{B}=n
\end{eqnarray}
$$$ (nは2以上の整数)$
$のとき、Aの取りうる値は何個あるか。$
半角数字のみで答えよ

26日前

13

問題文

垂心を$H$とする鋭角三角形$ABC$があり、$AB=9,AC=11,CH=7$を満たしています。
$△AHC$の外接円を$Γ$とし、直線$BH$と$Γ$の交点のうち$H$でない点を$D$として、線分$CD$の中点を$M$とします。

線分$HM$と線分$AC$の交点を$E$としたときの、$DE$の長さの$2$乗を求めてください。

解答形式

求める値は互いに素な整数$a,b$を用いて$\dfrac{a}{b}$と表されるので、$a+b$を解答してください。

第1回琥珀杯 大問4

Kohaku 採点者ジャッジ 難易度:
50日前

7

$a^2+b^2+c^2+d^2+e^2=13053769$を満たす自然数$(a,b,c,d,e)$の組を1つ求めよ。ただし、$a<b<c<d<e$とする。

解答形式

a,b,c,d,e,fの順で、間を半角スペースで区切り解答してください。
(例)$(a,b,c,d,e)=(1,2,3,4,5)$だった場合
→1 2 3 4 5

JMO2025yo-6?

simasima 自動ジャッジ 難易度:
28日前

7

問題文

正の実数からなる $2$ つの数列 $a_1,a_2,...$ と $b_1,b_2,...$ があり, 任意の整数 $n$ について以下を満たしている.
$$
(a_{n+1},b_{n+1})=\left(\frac{a_n}{2},b_n+\frac{a_n}{2}\right)または(a_{n+1},b_{n+1})=\left(a_n+\frac{b_n}{2},\frac{b_n}{2}\right)が成立する.
$$
$(a_1,b_1)$ が $(7,11)$ であるとき, $a_{100}$ としてあり得る値の中で $2025$ 番目に小さいものを求めよ.

解答形式

答えの値を $x$ としたとき, $2^{100}x$ の値を解答してください.
参考:$2^{100}=1267650600228229401496703205376$

OMC没問1

Kta 自動ジャッジ 難易度:
23日前

2

問題文

$AB<AC$ で,線分 $AB,AC$ の長さが正整数値である三角形 $ABC$ について,半直線 $CB$ 上で線分 $BC$ 上でないところに点 $D$ ,半直線 $BC$ 上で線分 $BC$ 上でないところに点 $E$ をそれぞれ置く.また,三角形 $ADE$ の外接円と直線 $AB,AC$ との交点のうち,$A$ でないほうをそれぞれ $P,Q$ とする.$4$ 点 $B,P,Q,C$ が同一円周上にあり,$DB=9,BC=45,CE=5$ のとき,線分 $PQ$ の長さとしてあり得る値の総和は互いに素な正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表せるので,$a+b$ を解答してください.

解答形式

半角数字で入力してください。