垂心を $H$ とする鋭角三角形 $ABC$ において,直線 $AH$ と辺 $BC$ の交点を $D$ とすると, $$BH=2,CH=7,DH=1$$ が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.
半角数字で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
一辺の長さが $5$ の正方形 $ABCD$ の辺 $AB$ 上(端点は除く)に点 $P$ をとります.三角形 $ACP$ の外接円と三角形 $BDP$ の外接円が $P$ でない点 $Q$ で交わり,$DQ=4$ となりました.このとき,線分 $PQ$ の長さを求めてください.ただし,求める長さは,互いに素な正整数 $a,c$ および平方因子をもたない正整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を解答してください.
$12$桁の整数$111111111111$の素因数の総和を求めてください. 但し,素因数の1つとして4桁の素数が含まれます.
整数で答えてください.
$1$ 辺の長さが $10$ である正方形 $ABCD$ の内部に点 $P$ をとると,$△ACP$ と $△BDP$ の面積がどちらも $10$ になりました.$P$ から $AB$ に下ろした垂線の足を $E$ としたとき,$AE$ の長さとしてありうる値の総積を求めてください.
半角数字で解答してください。
$\text{n-テトロミノ}$とは、正方形を四つ、下のようにつなげた図形です。
orangekidくんはこの図形が大好きなので、下の図のような形をした画用紙からなるべく多くの$\text{n-テトロミノ}$を切り出したいです。 $\text{n-テトロミノ}$を裏返しの状態で切り出してもよいものとするとき、orangekidくんは最大何個の$\text{n-テトロミノ}$を切り出せるでしょうか。 「個」はつけずに、整数値のみで答えてください。
整数$x, y, z$は$0<x<28,0<y, 0\leq z<20$ と $37x-13y=2z$ を共に満たします。このような整数の組$(x,y,z)$はいくつあるでしょう?
通常のサイコロを,素数の目が $2$ 回出るまで振り続けます.振った回数が $10$ 以下の素数である確率は互いに素な正整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せるので,$p+q$ を解答してください. 通常のサイコロとは,$1$ から $6$ までの目が存在し,それらが等確率に出現するサイコロを指します.
半角数字で解答してください.
$$ log_{2}\sqrt{log_381} $$
$$2^p+q^2=5r$$ を満たす $100$ 以下の素数の組 $(p,q,r)$ 全てにおいて,$pqr$ の総和を求めてください.
$$ |i^{2024}| $$
円に内接する四角形 $ABCD$ の対角線の交点を $P$ としたとき, $$AB=14\, , AP=13\, ,AD=16\, ,BP=PD$$ が成り立ちました.このとき $AC$ の長さを求めてください.ただし求める答えは互いに素な正整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せるので,$p+q$ を解答してください.
正整数 $x, y$ が $$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$ をみたすとき,$x$ のとり得る最小の値を求めて下さい.
半角英数にし、答えとなる正整数値を入力し解答して下さい.
OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732) のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です. 4bにそぐわないとしてOMCへの使用には至りませんでしたが,せっかくなのでよければ解いてみてください.
△ABCの外心をOとする. AOを直径とする円とAB, ACの交点のうちAでないものを それぞれD,EとするとDE=3, CD=5であり四角形BCEDは内接円を持ちました. このとき△ABCの面積を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.