B

Furina 自動ジャッジ 難易度: 数学 > 競技数学
2024年11月4日23:30 正解数: 13 / 解答数: 16 (正答率: 81.3%) ギブアップ不可
この問題はコンテスト「FFMC001」の問題です。

全 16 件

回答日時 問題 解答者 結果
2025年1月17日16:24 B Kta
正解
2025年1月1日14:20 B raka
正解
2025年1月1日14:16 B raka
不正解
2024年12月8日17:02 B ゲスト
正解
2024年12月8日16:59 B ゲスト
不正解
2024年11月5日19:51 B natsuneko
正解
2024年11月5日9:15 B katsuo_temple
正解
2024年11月5日8:27 B choco+
正解
2024年11月5日0:43 B Tehom
正解
2024年11月5日0:25 B araro
正解
2024年11月5日0:21 B uran
正解
2024年11月5日0:19 B uran
正解
2024年11月5日0:16 B uran
正解
2024年11月5日0:15 B uran
正解
2024年11月5日0:15 B noer
正解
2024年11月5日0:03 B noer
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

A

Furina 自動ジャッジ 難易度:
5月前

32

問題文

垂心を $H$ とする鋭角三角形 $ABC$ において,直線 $AH$ と辺 $BC$ の交点を $D$ とすると,
$$BH=2,CH=7,DH=1$$
が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.

解答形式

半角数字で入力してください。

シンプルな幾何

MrKOTAKE 自動ジャッジ 難易度:
3月前

6

問題文

鋭角三角形$ABC$があり外心を$O$とする.直線$BO$と$AC$の交点を$D$とおくと$BC=BD,DO=5,AD=6$であったので$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(J)

MrKOTAKE 自動ジャッジ 難易度:
3月前

23

問題文

$AB<AC$の鋭角三角形$ABC$があり垂心を$H$,外心を$O$とする.
直線$AO$と$BC$の交点を$D$とすると$AB:BD=5:3,CH=27,AH=19$
が成立したので$AC$の長さの$2$乗を解答してください.

解答形式

例)ひらがなで入力してください。

C

Furina 自動ジャッジ 難易度:
5月前

3

問題文

円 $\Gamma$ に内接する凸四角形 $ABCD$ において,直線 $AB,CD$ の交点を $S$,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $T$ とします.$S,C,D,T$ がこの順に並んでおり,かつ,
$$AB=10,SC=16,TD=5,BC\cdot AD=32$$
が成立しているとき,線分 $SB$ の長さを求めてください.ただし求める長さは,正整数 $a,b$ を用いて $\sqrt{a}-b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください。

PGC005 (D)

pomodor_ap 自動ジャッジ 難易度:
5月前

17

問題文

$AB<AC$ なる三角形 $ABC$ について,$C$ を通り $B$ で直線 $AB$ に接する円 $\gamma$ と線分 $AC$ の $C$ でない交点を $D$,$D$ を通り $A$ で直線 $AB$ に接する円 $\omega$ と $\gamma$ の $D$ でない交点を $E$ とします.いま,三角形 $ABC$ の外心を $O$ とすると,$$OD=OE, DE=2, BC=11$$ が成り立ちました.線分 $AC$ の長さの二乗を求めてください.

KOTAKE杯003(F)

MrKOTAKE 自動ジャッジ 難易度:
3月前

33

問題文

鋭角三角形$ABC$があり$BC$の中点を$M$とし,$B$から$AC$におろした垂線の足を
$D$とする.$AM$と$BD$の交点を$P$とし,半直線$CP$と$AB$の交点を$E$とすると$∠DEP=∠DMP,
DM=5,EM=2$が成立したので
三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯004(C)

MrKOTAKE 自動ジャッジ 難易度:
47日前

24

問題文

$∠A$が鋭角であり$AB=AD,BC=CD=7,∠ABC=∠CDA=90°$を満たす四角形$ABCD$がある.線分$AB$,線分$AD$の中点をそれぞれ$M,N$とし,直線$MN$と直線$BC$の交点を$P$とすると$AP=24$であったので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

N3

orangekid 自動ジャッジ 難易度:
10月前

14

問題文

整数$x, y, z$は$0<x<28,0<y, 0\leq z<20$ と $37x-13y=2z$ を共に満たします。このような整数の組$(x,y,z)$はいくつあるでしょう?

解答形式

半角数字で入力してください。

KOTAKE杯003(K)

MrKOTAKE 自動ジャッジ 難易度:
3月前

19

問題文

$AB=AE,BC<DE$を満たす円に内接する五角形$ABCDE$がある.
$AC$と$BE$の交点を$F$,$AD$と$BE$の交点を$G$とすると
$BG=153,EF=187,FG=117$が成立した.
直線$CD$と直線$BE$の交点を$P$とするとき$BP$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

PGC005 (A)

pomodor_ap 自動ジャッジ 難易度:
5月前

47

問題文

$BC=18$ かつ面積が $162$ なる三角形 $ABC$ について,重心を $G$,$G$ から $BC$ に下ろした垂線の足を $P$ とすると,三角形 $PGC$ の面積が $30$ となりました.$AC$ の長さの二乗を求めてください.

PGC005 (B)

pomodor_ap 自動ジャッジ 難易度:
5月前

35

問題文

$BC=123, \angle B=90^{\circ}$ なる三角形 $ABC$ について,内心を $I$,$\angle A$ 内の傍心を $J$ とすると,四角形 $ABIC$ は三角形 $BCJ$ よりも面積が $246$ 大きくなりました.$AB$ の長さを求めてください.

KOTAKE杯001(Q)

MrKOTAKE 自動ジャッジ 難易度:
8月前

23

問題文

$AB=15,AC=24$の鋭角三角形$ABC$があり内心を$I$,垂心を$H$とすると
$4$点$BCHI$は同じ円 $Γ$上にあった.このとき円 $Γ$の半径の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.