B

Furina 自動ジャッジ 難易度: 数学 > 競技数学
2024年11月4日23:30 正解数: 13 / 解答数: 16 (正答率: 81.3%) ギブアップ不可
この問題はコンテスト「FFMC001」の問題です。

全 16 件

回答日時 問題 解答者 結果
2025年1月17日16:24 B Kta
正解
2025年1月1日14:20 B raka
正解
2025年1月1日14:16 B raka
不正解
2024年12月8日17:02 B ゲスト
正解
2024年12月8日16:59 B ゲスト
不正解
2024年11月5日19:51 B natsuneko
正解
2024年11月5日9:15 B katsuo_temple
正解
2024年11月5日8:27 B choco+
正解
2024年11月5日0:43 B Tehom
正解
2024年11月5日0:25 B arararororo
正解
2024年11月5日0:21 B uran
正解
2024年11月5日0:19 B uran
正解
2024年11月5日0:16 B uran
正解
2024年11月5日0:15 B uran
正解
2024年11月5日0:15 B noer
正解
2024年11月5日0:03 B noer
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

A

Furina 自動ジャッジ 難易度:
2月前

30

問題文

垂心を $H$ とする鋭角三角形 $ABC$ において,直線 $AH$ と辺 $BC$ の交点を $D$ とすると,
$$BH=2,CH=7,DH=1$$
が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.

解答形式

半角数字で入力してください。

シンプルな幾何

MrKOTAKE 自動ジャッジ 難易度:
4日前

4

問題文

鋭角三角形$ABC$があり外心を$O$とする.直線$BO$と$AC$の交点を$D$とおくと$BC=BD,DO=5,AD=6$であったので$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

C

Furina 自動ジャッジ 難易度:
2月前

3

問題文

円 $\Gamma$ に内接する凸四角形 $ABCD$ において,直線 $AB,CD$ の交点を $S$,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $T$ とします.$S,C,D,T$ がこの順に並んでおり,かつ,
$$AB=10,SC=16,TD=5,BC\cdot AD=32$$
が成立しているとき,線分 $SB$ の長さを求めてください.ただし求める長さは,正整数 $a,b$ を用いて $\sqrt{a}-b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください。

KOTAKE杯003(J)

MrKOTAKE 自動ジャッジ 難易度:
14日前

20

問題文

$AB<AC$の鋭角三角形$ABC$があり垂心を$H$,外心を$O$とする.
直線$AO$と$BC$の交点を$D$とすると$AB:BD=5:3,CH=27,AH=19$
が成立したので$AC$の長さの$2$乗を解答してください.

解答形式

例)ひらがなで入力してください。

N3

orangekid 自動ジャッジ 難易度:
7月前

12

問題文

整数$x, y, z$は$0<x<28,0<y, 0\leq z<20$ と $37x-13y=2z$ を共に満たします。このような整数の組$(x,y,z)$はいくつあるでしょう?

解答形式

半角数字で入力してください。

KOTAKE杯003(F)

MrKOTAKE 自動ジャッジ 難易度:
14日前

33

問題文

鋭角三角形$ABC$があり$BC$の中点を$M$とし,$B$から$AC$におろした垂線の足を
$D$とする.$AM$と$BD$の交点を$P$とし,半直線$CP$と$AB$の交点を$E$とすると$∠DEP=∠DMP,
DM=5,EM=2$が成立したので
三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(K)

MrKOTAKE 自動ジャッジ 難易度:
14日前

19

問題文

$AB=AE,BC<DE$を満たす円に内接する五角形$ABCDE$がある.
$AC$と$BE$の交点を$F$,$AD$と$BE$の交点を$G$とすると
$BG=153,EF=187,FG=117$が成立した.
直線$CD$と直線$BE$の交点を$P$とするとき$BP$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(H)

MrKOTAKE 自動ジャッジ 難易度:
14日前

29

問題文

鋭角三角形$ABC$があり垂心を$H$とする.$H$に関して$A$と対称な点を$D$とすると,
$4$点$ABCD$は共円であり$BH=5,AC=20$であったので
$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(I)

MrKOTAKE 自動ジャッジ 難易度:
14日前

29

問題文

$AD<BC$の等脚台形$ABCD$があり線分$AB$上に$∠ADP=∠BCP$となる点$P$をとると
$AP=6,BP=9,AD=16$であったので
等脚台形$ABCD$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

階乗の和

nanohana 自動ジャッジ 難易度:
3月前

11

問題文

$$a,bは負でない整数とする。$$$$このときa!+b!=(a+b)!$$$$を満たす組(a,b)を全て求めよ。$$

解答形式

組(a,b)の個数を入力してください。

E

Furina 自動ジャッジ 難易度:
7月前

8

問題文

円 $\Omega$ があり,その周上に点 $P, Q$ があります.いま,$\Omega$ の弧 $PQ$ 上に $2$ 点 $A, B$ を,$P, A, B, Q$ がこの順にあるように取り,線分 $PQ$ 上に点 $C$ を取ると,三角形 $ABC$ の外接円は辺 $PQ$ に接しました.いま,$CQ$ の中点を $M$ とすると,$BM, AQ$ は三角形 $ABC$ の外接円上で交わったのでこの点を $R$ とします.いま,三角形 $ABC$ の外接円と三角形 $PQR$ の外接円の $R$ でない交点を $S$ とするとき,
$$AS=4, AP=2\sqrt{21}, BC=7$$
が成立しました.このとき,$BQ$ の長さは正整数 $a, b, c$ を用いて $\dfrac{\sqrt a-\sqrt b}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で解答してください.

KOTAKE杯003(G)

MrKOTAKE 自動ジャッジ 難易度:
14日前

37

問題文

三角形$ABC$の重心を$G$とすると,$∠AGB=120°,∠AGC=150°,AB=14$
であったので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.