正の有理数に対してスコアを次のように定義する。
有理数に対して正則連分数の数列を $[a_0;a_1,a_2,...,a_n]$とした時、$\sum^{n}_{i=0}a_i$
連分数を知らない人は下のWikipediaを見ても良いです
https://ja.wikipedia.org/wiki/%E9%80%A3%E5%88%86%E6%95%B0
例えば、$9$ のスコアは $9$ で、$\frac{7}{4}$ のスコアは $5$ で、$\frac{1}{7}$ のスコアは $7$ です。
スコアが $10$ であるような正の有理数の中で $100$ 番目に小さいものを解答してください。
答えは互いに素な正整数 $a,b$ を用いて、$\frac{b}{a}$ と表せるので $a+b$ を解答してください。
この問題の提出制限は $5$ 回です。
この問題を解いた人はこんな問題も解いています