第1問

sulippa 採点者ジャッジ 難易度: 数学
2025年5月19日20:00 正解数: 1 / 解答数: 1 (正答率: 100%) ギブアップ不可
この問題はコンテスト「整数問題4問」の問題です。

問題文

$p$ は $gcd(p, 10) = 1$ を満たす $p > 1$ の素数とする。
$\frac{1}{p}$ の小数表示における循環節を $C_1C_2...C_L$ とし、その長さを $L$ とする (すなわち $L = ord_p(10)$ である)。
循環節を構成する数字の並びから、以下の2つの整数を定義する。
1. $N_0 = C_1C_2...C_L$ (これを10進法の整数として評価した値)
2. $N_1 = C_2C_3...C_LC_1$ (同様に10進法の整数として評価した値)
また、$C_1 = \lfloor \frac{10}{p} \rfloor$ (すなわち $\frac{1}{p}$ の小数第1位の数字) とする。

以下の2つの条件 (A) と (B) を同時に満たすような、全ての組 $(p, q)$ を求めよ。
(A) $N_1 = qN_0$ が成り立つ。ここで $q$ は $q \ge 2$ を満たす整数である。
(B) $L = q - C_1$ が成り立つ。

解答形式

ある程度解答の方針を示した上で、
解を答えて下さい


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

第3問

sulippa 採点者ジャッジ 難易度:
8時間前

2

問題文

$gcd(x,y,z)=1$を満たす$x,y,z$について、 $x^2+y^2, y^2+z^2, z^2+x^2 $がすべて正の整数の平方となるとき、次の問いに答えよ。
(1) $x,y,z$ のうち、奇数であるものの個数は高々1つであることを示せ。
$x $を奇数、 $y, z$ を4の倍数とする。
(2) $y=44 $のとき、上記の条件を満たす正の整数$ x, z $の組を全て求めよ。

解答形式

(1)は簡潔な証明
(2)は答えだけで構いません

第2回琥珀杯 B

Kohaku 自動ジャッジ 難易度:
48日前

7

問題文

$AB=1$の正十二角形$ABCDEFGHIJKL$がある。$KD$と$CJ$、$AF$と$DK$、$AF$と$DI$、$DI$と$EJ$、$AH$と$EJ$、$AH$と$CJ$の交点を、それぞれ$M,N,O,P,Q,R$とする。六角形$MNOPQR$の面積を求めよ。

解答形式

互いに素な正整数$a,b,c$及び平方因子をもたない正整数$d$を用いて、$\frac{b−c\sqrt{d}}{a}$と表せます。$a+b+c+d$を解答してください。

400N

MARTH 自動ジャッジ 難易度:
7日前

7

$1$ 以上 $461$ 以下の整数からなる数列 $(a_1,a_2,\cdots,a_N)$ は以下を満たします.

  • $a_1=309,a_N=461$.
  • $a_n\neq 461\quad (n=2,3,\dots,N-1)$
  • $n=2,3,\dots,N$ について, $(a_1+a_{n-1})a_n \equiv (1+a_1a_{n-1})\pmod{461}$

このとき, $N$ の値は一意に定まるので, $N$ の値を求めてください.
ただし, $461$ は素数であり, $2^n\equiv 1\pmod{461}$ をみたす正整数 $n$ の最小値は, $460$ であり, $3a_1\equiv 5\pmod{461}$ です.

第2回琥珀杯 A

Kohaku 自動ジャッジ 難易度:
48日前

5

問題文

円$C_1:x^2+(y−\sqrt{6})^2=2$及び円$C_1$と$x$軸について対称な円$C_2$をとる。さらに、2点$(0,\sqrt{6}−\sqrt{2}),(0,−\sqrt{6}+\sqrt{2})$を通り$x$軸に垂直で、原点を中心とする円$C_3$をとり、円$C_2$の中心を通り$xy$平面に垂直な直線を$l$とする。円$C_3$を直線$l$周りに$360°$回転させてできる立体の体積を求めよ。

解答形式

正整数$a,c,e$と平方因子をもたない正整数$b,d$を用いて$(a\sqrt{b}−c\sqrt{d})π^e$と表せるので、$a+b+c+d+e$を解答してください。

自作問題

tomorunn 自動ジャッジ 難易度:
9日前

13

問題文

(10進法で)正の整数を書き、各桁の数字を赤か青に塗ったものを色付き整数と定義する。
例えば、57という数字を色付き整数で表すと、5,7をそれぞれ赤、青に塗るかのそれぞれ2通りあるので4通りの表し方がある。
次の条件を満たす色付き整数の個数を求めよ。
・各桁の数の総和が10である。
・どの桁にも0は使われていない。

解答形式

半角整数で入力してください。

600A

MARTH 自動ジャッジ 難易度:
44日前

11

$N=9000^2\times 9001$ とし, 以下の条件を満たす整数の組の列 $(x_0,y_0,z_0), (x_1,y_1,z_1) ,\dots,(x_{N},y_{N},z_{N})$ を良い列 と呼びます.

  • $(x_0,y_0,z_0)=(x_{N},y_{N},z_{N})=(0,0,0)$.
  • $n=1,2,\dots,N$ について, $(x_n-x_{n-1},y_n-y_{n-1},z_n-z_{n-1})$ は $(1,-1,0)$ の $6$ 通りの並べ替えまたは $(0,0,0)$ のいずれかに等しい.

このとき良い列について $(x_i,y_i,z_i)=(x_{i-1},y_{i-1},z_{i-1})$ を満たす $i\;(i=1,2,\dots,N)$ の個数を $k$ としたとき $2^k$ をその列の 良さ とします. 良い列すべてについてその良さの総和を $S$ とします. このとき $S$ を素数 $8999$ で割った余りを求めてください.

第2回琥珀杯 D

Kohaku 自動ジャッジ 難易度:
48日前

7

交わらない$2$円$O_1,O_2$は直線$m$に同じ側で接しており、その反対側に交わらない$2$円$O_3,O_4$が直線$m$に接している。円$O_x(x=1,2,3,4)$の半径を$x$、直線$m$との接点を$P_x$とすると、点$P_1,P_4,P_2,P_3$がこの順に並んだ。$P_1P_4=P_2P_3=5,P_2P_4=3$のとき、四角形$O_1O_2O_3O_4$の面積を求めよ。

第2回琥珀杯 E

Kohaku 自動ジャッジ 難易度:
48日前

7

問題文

純循環小数(少数第一位から循環する循環小数)$x$を定義域とする関数$f(x)$を、$x$の循環部とする。ただし、循環部に0が現れ、それより大きい位に0以外の数がない場合、その0は無視するものとする。$f(\frac{5}{33})=15,f(\frac{4}{3333})=12$といった具合である。
正整数$n$に対して、$n<m<2025^{2025}$なる正整数$m$であって、$n$の値にかかわらず以下の等式を満たすものはいくつあるか。
$$f(\frac{n}{m})=(m−2)n$$
必要ならば、$$0.30102<\log_{10}2<0.30103, 0.47712<\log_{10}3<0.47713$$
を用いてよい。

ちょっと前に生えたやつ

kinonon 自動ジャッジ 難易度:
9日前

18

問題文

$n=2\times 577$とする. このとき以下の値を素数$577$で割った余りを求めよ.
$$\sum _{k=0}^{n} {}_{n+k} \mathrm{C}_{n-k}\cdot {}_{2k} \mathrm{C}_{k}$$

解答形式

答えは正整数となるので、その値を解答してください

WMC(K)

Weskdohn 自動ジャッジ 難易度:
23日前

23

問題文

半径$66$の円に内接する正$66$角形の対角線(各辺も含む)の長さの$66$乗和を求めて下さい.
但しある長さの$𝑛$乗和とは,与えられた長さ$𝑃_1,𝑃_2…$について$𝑃_1^n + 𝑃_2^n …$を指します.

解答形式

答えは非常に大きくなる恐れがあるので,$2025$で割った余りを求めて下さい.
4/26 19:55 誤った答えが入力されていました。大変申し訳ありません。

整数問題 解説あり

sulippa 自動ジャッジ 難易度:
14日前

17

問題文

次の方程式を満たす、素数 $p$ と正の整数 $n, m$ の組 $(p, n, m)$ を全て求めよ。
$$ p^n + 144 = m^2 $$

解答形式

条件を満たす組中の数字の総和を半角で入力してください

WMC(E)

Weskdohn 自動ジャッジ 難易度:
23日前

25

問題文

SKG学院では,5×5のマス目を使い,とあるゲームが行われている.
ゲームのルールは以下である.
・お客さんと生徒がじゃんけんをする.勝った方が先手,負けた方が後手となる.
この時,あいこは考えないものとする.
・先手は黒の碁石,後手は白の碁石を,マスの上に交互に置いていく.
・同じマスには碁石は一つまでしか置けない.
・マス目が全て埋まった時,各行について次の条件を満たすものを特別な行と呼び,その個数を数える.
特別な辺:ある行の5マスを見た時,お客さんが置いた碁石の個数が偶数個であるもの.
・特別な行の個数が偶数であればお客さんの勝ち,奇数であれば生徒の勝ちとなる.

お客さんが勝つ確率をA,お客さんが勝つ時の碁石の置き方の総数をBとする.
A×Bの値を求めなさい.
但し,回転して重なるような碁石の置き方は区別しないとする.

解答形式

半角数字で入力して下さい.