第3問

sulippa 自動ジャッジ 難易度: 数学
2025年5月30日21:30 正解数: 10 / 解答数: 11 (正答率: 90.9%) ギブアップ数: 0
この問題はコンテスト「代数 全3問」の問題です。

全 11 件

回答日時 問題 解答者 結果
2025年10月5日23:02 第3問 Weskdohn
正解
2025年8月18日14:23 第3問 monicsequence_496
正解
2025年8月7日21:12 第3問 Ryomanic
正解
2025年8月1日0:31 第3問 ゲスト
正解
2025年7月11日20:50 第3問 iwashi
正解
2025年6月16日8:19 第3問 OYU__0YU01
不正解
2025年6月13日9:34 第3問 smasher
正解
2025年6月7日19:24 第3問 aaabbb
正解
2025年6月5日18:20 第3問 R3404
正解
2025年6月1日10:29 第3問 ゲスト
正解
2025年5月30日23:02 第3問 Nyarutann
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

✕✕

sulippa 自動ジャッジ 難易度:
4月前

12

✕✕

第1問

sulippa 自動ジャッジ 難易度:
4月前

4

問題文

3次の多項式 $P(x)$ は整数係数を持ち、すべての係数が整数であるとする。
0 でないある整数 $M$ について、$P(x)$ は以下の条件を満たす。
$kP(k) = M (k=1, 2, 3, 4)$
このとき、M が取りうる最小の正の整数値を求めよ。

解答形式

半角でスペースなし

組み合わせ

suth 自動ジャッジ 難易度:
4月前

8

1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ.
(ただしpは素数とする)

(半角の自然数が答え)

問題2

sulippa 自動ジャッジ 難易度:
2月前

5

問題文

整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。

$x \equiv p \pmod{9797}$
$x \equiv 11p + 69 \pmod{9991}$

この条件を満たす最小の素数 $p$ を求めよ。

解答形式

半角左詰め

問題3

sulippa 自動ジャッジ 難易度:
2月前

7

問題文

$p=3, \quad q=5, \quad r=7$

$X = p^q + q^p$
$Y = q^r + r^q$
$Z = r^p + p^r$

$N = X^p + Y^q + Z^r$

このとき、$N$を$105$で割った余りを求めよ。

解答形式

半角左詰め

関数方程式 解説修正版

Sry 自動ジャッジ 難易度:
30日前

8

$$問 題$$
$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yに対して恒等式$
$$f(x ^2+y)=f(kx ^2+2y)−f(3x ^2)$$
$を満たすとき、定数kの値を求めよ。$

問題1

sulippa 自動ジャッジ 難易度:
2月前

21

問題文

$3^{2025}$を $11$ で割った余りを求めよ。

解答形式

半角左詰め

ちょっと長い方程式

noname 自動ジャッジ 難易度:
18月前

6

問題文

$x,y$を整数とします。次の式を満たす$x,y$の組$(x,y)$を全て求めてください。$$x^2y^2+3x^2y-12xy^2-5x^2-36xy+25y^2+60x+78y=123$$

少し問題を変更いたしました。ご迷惑をおかけしてしまい申し訳ございません。

解答形式

$x$と$y$の積$xy$としてあり得るものの総和を半角で解答してください。

Lucas

shippe 自動ジャッジ 難易度:
31日前

14

問題文

₁₃₅C₃₀を7で割った余りを求めてください。

解答形式

半角数字で入力してください。


問題

半径 $1000$ の円の形をした平坦な地形の島がある。この島を訪れたトレジャーハンターのアリスは、この島のある $1$ 点 $\mathrm{T}$ の真下に宝が埋まっていることは知っているが、$\mathrm{T}$ の位置は知らない。アリスは、自分のいる地点と $\mathrm{T}$ との距離を正確に測る探知機を使って $\mathrm{T}$ にたどり着こうとしている。

はじめ、アリスは島の中心点 $\mathrm{A_0}$ にいる。この後、アリスはターン制で行動を繰り返す。$n=1,2,\ldots$ に対し、$n-1$ ターン目の行動が終わった後のアリスの位置を $\mathrm{A_{n-1}}$ とする。$n$ ターン目でアリスは以下の行動をとる:

$n$ ターン目の行動:
アリスは、今いる地点 $\mathrm{A_{n-1}}$ からちょうど距離 $1$ だけ離れた点 $\mathrm{A_{n}}$ に移動する。その後、探知機を使って線分 $\mathrm{TA}_n$ の長さ $d_n$ を正確に測る。

さて、あるターンで $d_n=0$ となった時、アリスは今いる地点の真下を掘り起こして宝を見つける。$\mathrm{T}$ の位置にかかわらず、アリスがうまく行動すれば $N$ ターン目で確実に宝を見つけることができるような正の整数 $N$ の最小値を求めよ。

解答形式

半角数字のみで1行目に入力せよ。

Floor, Ceil, Sqrt

yohaku7 自動ジャッジ 難易度:
3月前

17

問題文

以下の等式を満たす $0$ 以上の整数 $x$ をすべて求めよ。解答する際は、解答形式を参照すること。

$$
\left\lfloor \sqrt{x} \, \right\rfloor + \left\lceil \sqrt{x} \, \right\rceil = x
$$

ただし、実数 $x$ に対して $\lfloor x \rfloor$ は $x$ 以下の最大の整数、$\lceil x \rceil$ は $x$ 以上の最小の整数をいう。

解答形式

答えを小さい順に並び替え、半角数字で一つずつ改行で区切って答えてください。
末尾に改行はあってもなくても構いませんが、各行にスペース等は入れないでください。

例)答えが $-1,8,9,10$ のとき

-1
8
9
10

と解答してください。


問題

複素数の定数 $\alpha$ に対し、$|z- \alpha\bar{z}|\leq1-|\alpha|^2$ を満たす複素数 $z$ 全体の集合を $D$ とおく。以下の解答欄を埋めよ。

(1)$\alpha=0$ のとき、$D$ は複素数平面上で原点を中心とする半径 $\fbox{ア}$ の円の周上および内部になる。

次に $|\alpha|>0$ の場合を考える。以下、$\displaystyle \arg \alpha=\frac{6}{11}\pi$ とする。

(2) $|\alpha|=1$ のとき、$D$ は複素数平面上で原点を通る直線となり、偏角が $\displaystyle \frac{\fbox{イ}}{\fbox{ウエ}}\pi,\ \frac{\fbox{オカ}}{\fbox{キク}}\pi$ であるような複素数を全て含む。ただし $0\leq \displaystyle \frac{\fbox{イ}}{\fbox{ウエ}}\pi < \frac{\fbox{オカ}}{\fbox{キク}}\pi<2\pi$ とする。

(3) $0<|\alpha|<1$ の場合を考えよう。原点を中心として $z$ を反時計回りに $\displaystyle -\frac{\fbox{イ}}{\fbox{ウエ}}\pi$ だけ回転させた複素数を $w$ とおく(ただし $z=0$ のときは $w=0$ とする)。$z$ が $|z- \alpha\bar{z}|\leq1-|\alpha|^2$ を満たして動くときに $w$ が動く領域について考察することで、$D$ に対応する複素数平面上の図形が明らかになる。特に $|\alpha|=0.4$ のとき、$D$ の面積は $\displaystyle\frac{\fbox{ケコ}}{\fbox{サシ}}\pi$ である。

解答形式

解答欄ア〜シには、それぞれ0から9までの数字が1つ入る。同じカタカナの解答欄には同じ数字が入る。

(1)の答えとして、文字「ア」を半角で1行目に入力せよ。

(2)の答えとして、文字列「イウエオカキク」を半角で2行目に入力せよ。

(3)の答えとして、文字列「ケコサシ」を半角で3行目に入力せよ。

なお、分数はできるだけ約分された形となるように答えること。