第3問

sulippa 自動ジャッジ 難易度: 数学
2025年5月30日21:30 正解数: 6 / 解答数: 7 (正答率: 85.7%) ギブアップ数: 0
この問題はコンテスト「代数 全3問」の問題です。

全 7 件

回答日時 問題 解答者 結果
2025年7月11日20:50 第3問 iwashi
正解
2025年6月16日8:19 第3問 OYU__0YU01
不正解
2025年6月13日9:34 第3問 smasher
正解
2025年6月7日19:24 第3問 aaabbb
正解
2025年6月5日18:20 第3問 R3404
正解
2025年6月1日10:29 第3問 ゲスト
正解
2025年5月30日23:02 第3問 Nyarutann
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

第2問

sulippa 自動ジャッジ 難易度:
47日前

9

問題文

$P(x)$ は整数係数の3次多項式である。
すべての整数$ n $に対して、$P(n)+1$ は常に立方数となるとする
$P(0)=7$ および $P(1)=26$ が成立している。
このとき、$P(2)-P(-1)$ の値を求めよ。

回答形式

半角スペースなし

第1問

sulippa 自動ジャッジ 難易度:
47日前

3

問題文

3次の多項式 $P(x)$ は整数係数を持ち、すべての係数が整数であるとする。
0 でないある整数 $M$ について、$P(x)$ は以下の条件を満たす。
$kP(k) = M (k=1, 2, 3, 4)$
このとき、M が取りうる最小の正の整数値を求めよ。

解答形式

半角でスペースなし

因数分解

kikutaku 自動ジャッジ 難易度:
38日前

2

問題文

与式を因数分解せよ。x^6 - 41x^5 + 652x^4 - 5102x^3 + 20581x^2 - 40361x + 30030

回答の仕方

因数分解された式のみ回答

abc (大数宿題2024-2)

Lim_Rim_ 自動ジャッジ 難易度:
3月前

9

問題文

$\sqrt[abc]{a! + b! + c!}$が整数となるような正の整数の組$(a,b,c)$をすべて求めよ.

解答形式

すべての組に対する $a+b+c$ の値の総和を解答してください。論証は解説を参照してください。

問題3

sulippa 自動ジャッジ 難易度:
2日前

4

問題文

$p=3, \quad q=5, \quad r=7$

$X = p^q + q^p$
$Y = q^r + r^q$
$Z = r^p + p^r$

$N = X^p + Y^q + Z^r$

このとき、$N$を$105$で割った余りを求めよ。

解答形式

半角左詰め

ABS sum

simasima 自動ジャッジ 難易度:
4月前

7

問題文

$(a_1,a_2,...,a_{100})$ は $(1,2,...,100)$ の順列です。数列 $a$ のコストを次のように定義します。
$$
\sum^{50}_{x=1}\sum^{100}_{y=31}|a_x-a_y|
$$
コストとしてあり得る最小値はいくつですか?

解答形式

非負整数で解答してください。

Floor, Ceil, Sqrt

yohaku7 自動ジャッジ 難易度:
30日前

10

問題文

以下の等式を満たす $0$ 以上の整数 $x$ をすべて求めよ。解答する際は、解答形式を参照すること。

$$
\left\lfloor \sqrt{x} \, \right\rfloor + \left\lceil \sqrt{x} \, \right\rceil = x
$$

ただし、実数 $x$ に対して $\lfloor x \rfloor$ は $x$ 以下の最大の整数、$\lceil x \rceil$ は $x$ 以上の最小の整数をいう。

解答形式

答えを小さい順に並び替え、半角数字で一つずつ改行で区切って答えてください。
末尾に改行はあってもなくても構いませんが、各行にスペース等は入れないでください。

例)答えが $-1,8,9,10$ のとき

-1
8
9
10

と解答してください。

三角関数の方程式

sha256 自動ジャッジ 難易度:
14月前

3

問題文

実数$x$についての以下の方程式を解いてください。($0\leq x\leq 1$)
$$
\tan(\color{red}{\sin^{-1}x})+\cot(\color{blue}{\cos^{-1}x})=\sin(\color{green}{\cot^{-1}x})+\cos(\color{purple}{\tan^{-1}x})
$$
ただし$\cot{x}$は$\frac{1}{\tan{x}}$を意味し、$\sin^{-1}x,\cos^{-1}x,\cot^{-1}x,\tan^{-1}x$でそれぞれの逆関数を表すこととします。

(※定義域と値域の取り方はWikipedia等にあるような一般的なものを用います)

解答形式

解は一つに定まり、整数$a,b$を用いて$x=\sqrt{a+\sqrt{b}}$と書けるので、$a^{10}+b^{10}$の値を半角英数字で入力してください。

問題2

sulippa 自動ジャッジ 難易度:
2日前

4

問題文

整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。

$x \equiv p \pmod{9797}$
$x \equiv 11p + 69 \pmod{9991}$

この条件を満たす最小の素数 $p$ を求めよ。

解答形式

半角左詰め

韓国産高校数学問題 - 1

nflight11 自動ジャッジ 難易度:
11月前

7

問題文

すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。

$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$

この時、$|a_{1998}a_{1106}|$を求めよ。

解答形式

答えをそのまま入力しなさい。

工夫すると簡単になる問題

ac 自動ジャッジ 難易度:
5月前

4

問題

式1の時、式2の解を求めよ。
ただし、数の小さい順に答え、
答えが2つ以上ある場合、「,」を用いること。
例 2分の1と1の時は、1/2,1

式1

$$
12a^{2}-a=1
$$

式2

$$
16a^{2}-8a-9a^{2}-6a
$$

loop

simasima 自動ジャッジ 難易度:
4月前

15

問題文

集合 $\{ 1,2,...,20 \}$ を $X$ とおきます。
全射である関数 $f:X \to X$ であって以下の条件を満たすものはいくつありますか?
$n< 7$ を満たす正整数全てについて、ある正整数 $k$ が存在して $f^k(n)>11$ が成立する。
補足: $f^n$ は $f$ の $n$ 回合成です。

解答形式

非負整数で解答してください。