$n$を整数とする。$n^{8}-n^{2}$を割り切る最大の自然数を求めよ。
半角数字で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。
$x \equiv p \pmod{9797}$ $x \equiv 11p + 69 \pmod{9991}$
この条件を満たす最小の素数 $p$ を求めよ。
半角左詰め
✕✕
$3^{2025}$を $11$ で割った余りを求めよ。
tan1°は有理数か
はいorいいえで答えてね!
(解答が間違っていました。すみませんでした。修正しました.)
$p=3, \quad q=5, \quad r=7$
$X = p^q + q^p$ $Y = q^r + r^q$ $Z = r^p + p^r$
$N = X^p + Y^q + Z^r$
このとき、$N$を$105$で割った余りを求めよ。
非負整数 $n$ に対して, $a_n$ を以下で定めます.$$a_0=1,\quad a_{n+1}=10a_n+4$$ このとき, $a_n$ が累乗数となるような非負整数 $n$ に対して, $a_n$ の総和を求めてください. ただし, 累乗数とは, 自然数 $a$ と$2$ 以上の自然数 $b$ を用いて $a^b$ と表せる数です.
例)整数を答えてください.
$n$を$2025$以下の正整数とする。 ある$n$について、$(n^{2}+n+1)(n^{3}+n^{2}-2n)$がもつ素因数$2$の個数を$d(n)$で表す。 $d(n)=1$となるような$n$の個数を求めよ。
₁₃₅C₃₀を7で割った余りを求めてください。
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。
互いに素な正整数q,pを用いて p/q と表せるため、p+qを解答してください。
$$ \sqrt{log_\frac{1}{3}(\frac{1}{273})}の整数部分? $$
$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。 $m$の値を求めよ。
$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。 $m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。
命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ
真ならば真、偽ならば偽と入力