PDC008.5 (G)

pomodor_ap 自動ジャッジ 難易度: 数学 > 競技数学
2025年8月4日22:00 正解数: 6 / 解答数: 8 (正答率: 75%) ギブアップ数: 0
この問題はコンテスト「PDC008.5」の問題です。

問題文

鋭角三角形 $ABC$ について線分 $AC$ 上に点 $P$ を取り,線分 $PC$ の垂直二等分線と線分
$BC$ が交わったのでその点を $D$ とする.線分 $AB$ 上の点 $E$ が $ED\parallel AC$ を満たしている.三角形 $PED$ の外接円と線分 $BC$ が $D$ でない点 $F$ で交わっており,$$FA=FC=7, BD=4, PD=5$$ が成り立った.このとき,線分 $AC$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

19月前

6

一次関数が(p+q)を満たすとき

y=1/2x+(p+q)がx+(p+q)=12を満たすとき、xの値を求めなさい。ただし、xは自然数であるものとする。

解答形式

数字は全角で入力してください。

PDC008.5 (D)

pomodor_ap 自動ジャッジ 難易度:
18時間前

18

問題文

円に内接する四角形 $ABCD$ について,線分 $AC$ はその直径をなす.線分 $BD$ の中点を $M$ とすると $AM=AD, BD=12, CD=13$ が成立した.線分 $BC$ の長さの二乗を求めよ.

文化祭算数問題 1

sta_kun 自動ジャッジ 難易度:
10月前

9

問題文

角 $C$ が直角となるような三角形 $ABC$ の辺 $BC$ 上に点 $D$ をとると,角 $DAC:$ 角 $BAD=1:2$,$AD$ の長さは $3 \mathrm{cm}$,$AB$ の長さは $5 \mathrm{cm}$ となりました.このとき,$BD:DC$ を求めてください.ただし,求める比は互いに素な正整数 $a,b$ を用いて $a:b$ と表せるので $a+b$ の値を解答して下さい.

解答形式

半角数字で解答してください.

文化祭算数問題 3

sta_kun 自動ジャッジ 難易度:
10月前

14

問題文

四角形 $ABCD$ について,線分 $BD$ 上に点 $E$ を取ると,$AE=BD$ で,角 $EAD=$ 角 $AED=$ 角 $EBC=$ 角 $BCE=40°$ が成り立ちました.このとき角 $BDC$ は何度ですか?

解答形式

半角数字で解答してください.

PDC008.5 (F)

pomodor_ap 自動ジャッジ 難易度:
18時間前

16

問題文

任意の正の整数 $m, n(m\leq n)$ について $\displaystyle |\sum_{i=m}^{n} a_i| \leq 2$
が成り立つような整数列 $a_i (i\geq 1)$ について,$(a_1, a_2, …, a_{100})$ としてありうる組は $N$ 個存在する.$N$ を素数 $97$ で割った余りを求めよ.

訂正: 「非負整数列」と誤りがありましたが,正しくは整数列です.申し訳ありません.

交わる円と三角形

tb_lb 自動ジャッジ 難易度:
23月前

20

【補助線主体の図形問題 #115】
 今週の図形問題です。今回は重めの問題にしてみました。とはいえ、補助線が活躍するのはいつも通りです。じっくり腰を据えて挑戦してください!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

PDC008.5 (E)

pomodor_ap 自動ジャッジ 難易度:
18時間前

24

問題文

素数の組 $(p, q, r, s, t)$ について
$$\dfrac{p^4 + q^4 + r^4 + s^4 + t^4 + 340}{8}$$ としてありうる最小の素数値を求めよ.

文化祭算数問題 2

sta_kun 自動ジャッジ 難易度:
10月前

14

問題文

四角形 $ABCD$ について,角 $DBC=20°$,角 $BDC=90°$,角 $ADB=40°$,$AD:BC=1:2$ が成り立ちました.このとき角 $ABD$ は何度ですか?

解答形式

半角数字で解答して下さい.

幾何

katsuo_temple 自動ジャッジ 難易度:
3月前

8

問題文

九点円中心を$N$とする鋭角三角形$ABC$において,$BN$と$AC$の交点を$P$,$CN$と$AB$の交点を$Q$とする.直線$AC$に関して$B$と対称な点を$B'$,直線$AB$に関して$C$と対称な点を$C’$とし,$B'Q$と$C'P$の交点を$X$とするとき,以下が成立しました.$$\angle BAX=\angle NAX \tan\angle ACB=\frac{5}{6} AB=10$$このとき,三角形$ABC$の面積を求めて下さい.

解答形式

半角で解答して下さい.

PDC008.5 (C)

pomodor_ap 自動ジャッジ 難易度:
18時間前

23

問題

$a,b$ を実数とする.$f(x)=x^4+ax^3+bx^2+ax+1$ は $f(1/2)\cdot f(1/3)=4$ を満たしている.$f(2)+f(3)$ としてありうる最小の正の整数値を求めよ.

2年前

17

【補助線主体の図形問題 #109】
 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

14月前

11

問題

$1$ 以上の整数 $n$ について関数 $f(n)$ は以下の式により定義されます.$$f(n)=\sum_{k=1}^{2n}\prod_{m=0}^{2^9}(k-m)$$ このとき,$f(n)=0$ の成り立つ $n$ の総和は,素数 $p$ と整数 $m$ を用いて,$pm$ と示せるので,$p+m$ の最小値を回答してください.
 ただし,素数表:https://onlinemathcontest.com/primes は用いても構いません.

解答形式

非負整数で回答してください.