$2025 \times 2025$ のマス目があり、右から $m$ 列目、上から $n$ 行目のマスを $(m,n)$ と表します。
いま、$(1,1)$ に東くんがおり、辺を共有するマスを通って最短距離で $(2025,2025)$ まで移動します。
このとき、以下を満たすような移動方法は $M$ 通りあります。$M$ は $2$ で何回割り切れますか?
$$i と j がともに偶数であるようなマス (i,j) を一つも通らない$$
半角数字で解答してください
この問題を解いた人はこんな問題も解いています