$2$ 以上の整数 $n$ のうち,次の条件を満たすものはいくつありますか?
答えは非負整数値となるので,それを半角で解答してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$1000$ の正の約数の集合を $D$ とします.また,$999$ 次方程式
$$x^{999}+x^{998}+\dots+x+1=0$$
の $999$ 個の解を $x=x_1,x_2,\dots,x_{999}$ とします.このとき,
$$\sum_{d\in D}^{}\sum_{s=1}^{999} x_s^d$$
の値を求めてください.
$26$ 種類あるアルファベットの大文字からなる文字列に対し,次のようにして整数を対応付けます.
例えば,文字列 $CAT$ は,$C$ が $3$ 番目,$A$ が $1$ 番目,$T$ が $20$ 番目のアルファベットであるから $3120$ となります.このように,ある文字列に対応付けられる整数は一意に定まります. いま,ある文字列に対応付く整数が $12012311821$ となりました.元の文字列として考えられるものはいくつありますか?
答えは非負整数値となるので,それを半角で入力してください.
$13$ の倍数である $9$ 桁の正整数であって,上 $3$ 桁の整数も上 $6$ 桁の整数も $13$ の倍数であるようなものはいくつありますか?
ある正の実数 $k$ があり,$x$ についての $4$ 次多項式 $f(x)$ を
$$f(x)=x^4+4kx^3+3kx^2+2kx+k$$
と定めます.方程式 $f(x)=0$ は相異なる $4$ 個の複素数解を持ったのでそれらを $\alpha,\beta,\gamma,\delta$ とし,さらに $x$ についての $4$ 次多項式 $g(x)$ を,$4$ 次の項の係数が $1$ であり,かつ方程式 $g(x)=0$ が $4$ 個の複素数解 $\dfrac{1}{\alpha},\dfrac{1}{\beta},\dfrac{1}{\gamma},\dfrac{1}{\delta}$ を持つように定めます. $g(6)=2025$ であるとき,$k$ の値を求めてください.
答えは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.
以下の条件をすべて満たすような正整数 $n$ はいくつありますか?
$n$ は $3$ の倍数である.
$2$ 進法で表記した $n$ はちょうど $15$ 桁の数で,そのうち $5$ つの桁の数字が $0$ である.
三角形 $ABC$ について,重心を $G$ ,線分 $AB$ の中点を $M$ ,線分 $AC$ の中点を $N$ とし,直線 $AG,MN$ の交点を $P$ としたとき,四角形 $BGPM$ の面積が $2025$ となりました.三角形 $ABC$ の面積を求めてください.
$n$ を $3$ 以上の奇数とします.いま,円に内接する凸 $n$ 角形 $P_1P_2\dots P_n$ があり,$k=1,2,\dots,n$ について角 $P_k$ の大きさを ${a_k}^{\circ}$ としたところ,
$$\sum_{k=1}^{\frac{n-1}{2}}a_{2k}=7777$$
が成立しました.このとき,度数法での角 $P_1P_2P_n$ の大きさとして考えられる値の総和を解答してください.
鋭角三角形 $ABC$ があり,$A$ から $BC$ におろした垂線の足を $H$ とします.三角形 $ABC$ の外接円の,$C$ を含まない方の弧 $AB$ 上に点 $P$ をとれば, $$\angle APH=90^\circ ,\quad BH=3,\quad CH=4,\quad AP=10$$ が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形 $ABC$ があり,内心を $I$ とし直線 $AI$ と $BC$ の交点を $D$ とすると三角形 $BDI$ の外接円は三角形 $ABC$ の外接円に点 $B$ で内接し,以下が成立しました. $$BD=12,\quad BI=10$$ このとき線分 $AC$ の長さを解答してください.
正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う. また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す. このとき, $$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.
$AB<AC$ を満たす鋭角三角形 $ABC$ があり, $A$ から $BC$ に下ろした垂線の足を $H$ とし,線分 $AH$ 上に $\angle ABP = \angle ACP$ を満たす点 $P$ をとります.また,線分 $BC$ と三角形 $ACP$ の外接円の交点のうち $C$ でないものを $D$ とし,直線 $BP,AD$ の交点を $E$ とすれば, $$BP=CD=5,\quad PE=3$$ が成立したので三角形 $ABC$ の面積を解答してください.
一辺の長さが $68$ の正三角形 $ABC$ について,線分 $BC$ 上に点 $D$ をとり,$D$ から $AB,AC$ に降ろした垂線の足をそれぞれ $E,F$ とする.$BE=14$ が成り立つとき,線分 $CF$ の長さを求めよ.