全 26 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う. また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す. このとき, $$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.
$p^2q+16r=2s^2$ を満たす素数の組 $(p,q,r,s)$ すべてについて,$pqrs$ の総和を解答せよ.
一辺の長さが $68$ の正三角形 $ABC$ について,線分 $BC$ 上に点 $D$ をとり,$D$ から $AB,AC$ に降ろした垂線の足をそれぞれ $E,F$ とする.$BE=14$ が成り立つとき,線分 $CF$ の長さを求めよ.
$$x^4-xy^3+y^2=11, x^3y-y^4+x^2=13$$ を満たす複素数の組 $(x,y)$ について,$\dfrac{y}{x}$ としてありうる値の総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.
三角形 $ABC$ について,線分 $BC,CA$ の中点を $M,N$ とし,三角形 $AMN$ の外接円と三角形 $ABC$ の外接円,半直線 $AB$ がそれぞれ $A$ でない点で交わったのでそれぞれを $D, E$ とする.$MD=5, AB=34, BE=7$ が成り立つとき,線分 $BC$ の長さの二乗を解答せよ.
$0$ 以上 $1$ 以下の実数 $a_{1} , a_{2} , a_{3}$ について,以下の値の最大値を求めてください.
$$a_{1} + 2a_{2} +3a_{3} +4\sqrt{a_{1}(1-a_{1}) + a_{2}(1-a_{2}) + a_{3}(1-a_{3})}$$
求める値を $M$ としたとき,$10000M$ の整数部分を解答してください.
正三角形 $ABC$ の内部に点 $P$ をとったところ,以下が成立しました.
$$AP = 10 , BP = 14 , CP = 16$$
このとき,正三角形 $ABC$ の面積を求めて下さい.
求める値を $2$ 乗した値は正整数となるので,その値を求めて下さい.
以下の式を満たす正の整数の組 $(m,n)$ 全てについて,$m + n$ の総和を求めてください.
$$(mn - 1)^2 + (m + n)^2 = 650$$
正整数で答えてください.
nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.
全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.
三角形 $ABC$ があり,内心を $I$ とし直線 $AI$ と $BC$ の交点を $D$ とすると三角形 $BDI$ の外接円は三角形 $ABC$ の外接円に点 $B$ で内接し,以下が成立しました. $$BD=12,\quad BI=10$$ このとき線分 $AC$ の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB<AC$ を満たす鋭角三角形 $ABC$ があり, $A$ から $BC$ に下ろした垂線の足を $H$ とし,線分 $AH$ 上に $\angle ABP = \angle ACP$ を満たす点 $P$ をとります.また,線分 $BC$ と三角形 $ACP$ の外接円の交点のうち $C$ でないものを $D$ とし,直線 $BP,AD$ の交点を $E$ とすれば, $$BP=CD=5,\quad PE=3$$ が成立したので三角形 $ABC$ の面積を解答してください.
$1000$ の正の約数の集合を $D$ とします.また,$999$ 次方程式
$$x^{999}+x^{998}+\dots+x+1=0$$
の $999$ 個の解を $x=x_1,x_2,\dots,x_{999}$ とします.このとき,
$$\sum_{d\in D}^{}\sum_{s=1}^{999} x_s^d$$
の値を求めてください.
答えは非負整数値となるので,それを半角で解答してください.