PDC010 (C)

poinsettia 自動ジャッジ 難易度: 数学 > 競技数学
2025年10月24日21:00 正解数: 11 / 解答数: 27 (正答率: 40.7%) ギブアップ数: 0
この問題はコンテスト「PDC010」の問題です。

問題文

$1\leq a_1 < a_2 < a_3 < a_4 < a_5\leq 100$ をみたす整数の組 $(a_1,a_2,a_3,a_4,a_5)$ すべてについて,次の値の総和を求めよ.
$$\frac{a_1}{1}+\frac{a_2}{2}+\frac{a_3}{3}+\frac{a_4}{4}+\frac{a_5}{5}$$


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

PDC010 (B)

poinsettia 自動ジャッジ 難易度:
1日前

36

問題文

正の整数について定義され(正とは限らない)整数値を取る関数 $f$ であって,任意の正の整数 $m,n$ について
$$f(mn)=f(m)^2+f(m)f(n)-f(1)$$
を満たすものについて,$(f(1), f(2), …, f(100))$ としてありうる組はいくつ存在するか?

PDC010 (E)

poinsettia 自動ジャッジ 難易度:
1日前

16

問題文

$3\times 1000$ の $2$ つのマス目 $A,B$ があり,これらの $6000$ マスのうち $0$ 個以上に印をつける.印の付け方であり,以下を満たす方法は $N$ 通り存在する.$N$ が $2$ で割り切れる回数を解答せよ.

  • $A$ または $B$ から取り出せる $2\times 2$ の部分マス目(連結成分)であり,印のついたマスの個数が $1$ または $3$ であるようなものを $M$ とすると,$M\geq 1998$ である.

PDC010 (F)

poinsettia 自動ジャッジ 難易度:
1日前

12

問題文

以下が成り立つ正の整数の組 $(a_1, a_2, a_3, b_1, b_2)$ のうち,$a_1$ が最小であるようなものの中で,$b_2$ が最も小さいようなものは一意に定まるので,それについて $a_1a_2a_3b_1b_2$ を解答せよ.

  • $a_1\geq a_2\geq a_3, b_1\geq b_2$
  • $a_1 + a_2 + a_3 = b_1 + b_2$
  • $b_1!b_2!$ は $a_1!a_2!a_3!$ で割り切れる.
  • $a_1 = b_1 + 4$

PDC010(A)

poinsettia 自動ジャッジ 難易度:
1日前

39

問題文

各位の和が奇数であるような,$11$ で割り切れる最小の正の整数を求めよ.

PDC010 (D)

poinsettia 自動ジャッジ 難易度:
1日前

23

問題文

鋭角三角形 $ABC$ について,垂心を $H$,直線 $AH$ と $BC$,$BH$ と $AC$ の交点をそれぞれ $D,E$ とし,線分 $BC$ の中点を $M$ とする.四角形 $BDHP$ が長方形となるように点 $P$ を取ると $\angle APM=90^{\circ}, AE=3, EC=8$ が成立するとき,線分 $AD$ の長さの二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

PDC009 (C)

poinsettia 自動ジャッジ 難易度:
25日前

28

問題文

正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う.
また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す.
このとき,
$$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.

D

nmoon 自動ジャッジ 難易度:
23日前

37

問題文

$0$ 以上 $1$ 以下の実数 $a_{1} , a_{2} , a_{3}$ について,以下の値の最大値を求めてください.

$$a_{1} + 2a_{2} +3a_{3} +4\sqrt{a_{1}(1-a_{1}) + a_{2}(1-a_{2}) + a_{3}(1-a_{3})}$$

解答形式

求める値を $M$ としたとき,$10000M$ の整数部分を解答してください.

PDC009 (E)

poinsettia 自動ジャッジ 難易度:
25日前

26

問題文

$14\times 14$ のマス目に以下のように整数を書き込む.ただし,左から $m$, 上から $n$ 番目のマスを $(m,n)$ で表すものとする.

  • $(1,1)$ に $1$ を,$(1,2)$ と $(2,1)$ に $2$ を書き込む.
  • $k\geq 3$ について,すべてのマスに整数が書き込まれるまで以下を繰り返す: $k-2$ が書き込まれているいずれかのマスと,辺を共有せず頂点のみを共有しているマスであり,まだ整数が書き込まれていないようなものすべてに $k$ を書き込む.

いま,PDC 君は $(m,n)$ にいるとき $(m+1,n), (m,n+1)$ に瞬間移動することができ,またそれ以外の移動をすることができない.あるマスからあるマスへの経路について,全ての訪問したマス(出発地点と到着地点を含む)に書き込まれた数字の総和をスコアとする.
$(1,1)$ から $(14,14)$ まで移動するとき,スコアが最小となるような移動方法はいくつあるか?

ABC(G)

atawaru 自動ジャッジ 難易度:
27日前

36

問題文

$1000$ の正の約数の集合を $D$ とします.また,$999$ 次方程式

$$x^{999}+x^{998}+\dots+x+1=0$$

の $999$ 個の解を $x=x_1,x_2,\dots,x_{999}$ とします.このとき,

$$\sum_{d\in D}^{}\sum_{s=1}^{999} x_s^d$$

の値を求めてください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

20月前

8

【補助線主体の図形問題 #126】
 今週の図形問題です。隙あらば暗算で処理できる程度の問題を好んで出題しているのですが、今回は暗算処理は厳しいかもしれません。紙&ペンをご用意の上、挑戦していただければと思います。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

正方形の中の八角形の面積

Fuji495616 自動ジャッジ 難易度:
21月前

10

問題文

四角形ABCDは正方形で、点E,F,G,Hは辺の中点です。四角形ABCDの面積が54㎠のとき、青い部分の面積は何㎠ですか。

解答形式

半角数字で入力してください。
例)10

PDC009 (D)

poinsettia 自動ジャッジ 難易度:
25日前

23

問題文

$$x^4-xy^3+y^2=11, x^3y-y^4+x^2=13$$ を満たす複素数の組 $(x,y)$ について,$\dfrac{y}{x}$ としてありうる値の総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.