問題11

Youteru 自動ジャッジ 難易度: 数学 > 競技数学
2025年12月13日12:00 正解数: 0 / 解答数: 7 ギブアップ不可
この問題はコンテスト「組合せしか出題しません」の問題です。

全 7 件

回答日時 問題 解答者 結果
2025年12月14日22:27 問題11 la
不正解
2025年12月14日22:25 問題11 la
不正解
2025年12月14日22:15 問題11 la
不正解
2025年12月14日19:54 問題11 asmin
不正解
2025年12月14日19:43 問題11 asmin
不正解
2025年12月14日19:36 問題11 asmin
不正解
2025年12月14日19:35 問題11 asmin
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

問題8

Youteru 自動ジャッジ 難易度:
23日前

10

次の条件を満たす2025以下のnはいくつ存在しますか

条件
$f(n)=4d(n)$として、
($d(n)$はnの正の約数の個数)
$f^5(n)+f^{1278}(n)=56$が成立する。
(fの肩は関数の合成回数を表す)

はんぺん

Azarashiii 自動ジャッジ 難易度:
15月前

1

問題文

$x>1 , y>1$で、
$α = log_4 x , β = log_8 y $ と定める。 $2α + 3β =2 $ のとき、$x+y $ のとりうる最小の値を求めよ。

問題14

Youteru 自動ジャッジ 難易度:
23日前

4

Sを0以上10以下の自然数の集合として、
P君は、xy座標平面$S^2$の盤面上で、スタートからゴールへ移動する。xが増加する方向が右で、yが増加する方向が上である。6種類の点が存在する。
スタート…(0,0)で、P君が可能な動きはバイオレットと同じである。
ゴール…(10,10)
ネイビー…スタート、ゴール以外の点について、xがyの倍数なら(x,y)はネイビーであり、xがyの倍数でないなら(x,y)はネイビーでない。P君はネイビーに移動できない。
バーミリオン…P君がこの点にいるとき、P君は1つ上へ移動するか、2つ右、1つ下に飛んで移動することができる。
バイオレット…P君がこの点にいるとき、P君は1つ右へ移動するか、2つ上、1つ左に飛んで移動することができる。
アイボリー…P君はアイボリーに移動できない。アイボリーは全部で5個存在する。

ただし、P君が移動して座標平面$S^2$から飛び出てはいけない。
全ての$S^2$に含まれる点のうち、スタート、ゴール、ネイビー以外の点に自由にバーミリオン、バイオレット、アイボリーのいずれかを塗ることができ、その盤面AについてP君がスタートからゴールに行く方法の総数をF(A)とする。
F(A)の最大値をXとし、
全ての盤面Aについて、F(A)の総和をYとし
Yを10007で割った余りをZとして、XとZの10進法における文字列の結合を求めよ。

問題9

Youteru 自動ジャッジ 難易度:
23日前

10

n以下の全ての自然数の集合Sの部分集合Tは次を満たした。
・Tの任意の要素x,yについて、xyはTに含まれない。
nに対するTの要素数の最大値をf(n)とする。
このとき、ある人は命題Qnを唱えた。
「Tの要素数がf(n)となるTは1つしかない」
Qnが偽となる2025以下のnの総和を求めよ。

問題13

Youteru 自動ジャッジ 難易度:
23日前

14

どの4頂点を選んでもそれが閉路にならない、800頂点の単純平面グラフの辺の数の最大値を求めよ。

問題7

Youteru 自動ジャッジ 難易度:
23日前

15

3つの空箱がある。次のルールで2人で交互に石を箱に入れる。
・どちらかの行動を行う
 ・1つの箱に1つ石を入れる。
 ・既に石が入っている1つの箱に、今入っている個数の石をその箱に入れる
(つまり、石の個数が倍になる)
・ただし、既に箱にN個以上入っている場合はこれ以上石を入れられない

全ての山の石の個数をそれぞれN以上にした方が勝ちである。後手必勝となる2025以下のNの総和を求めよ。

問題12

Youteru 自動ジャッジ 難易度:
23日前

10

次のグラフにおいて、毎ターン1つの線分上を駒が移動するとき、初期位置を点Pとして、1024ターン後に駒が点Pに戻るとき、駒の移動のやり方としてあり得るものの総数を1007で割った余りを求めよ。

点つなぎ

yura 自動ジャッジ 難易度:
2月前

3

問題文

ある円周上に点をランダムに無限個打ち,打った順に $A_1,A_2,A_3,\cdots$ とします.また,以下のルールに従い点つなぎを行います.

ルール
  • ペン先を $A_1$ に置く.
  • 現在のペン先が $A_i$ にあるとき,$A_i$ と $A_{i+1}$ を線分で結ぶ.このとき,ペン先は $A_{i+1}$ へと移動する.
  • 途中で他の線分と端点を除いて交わってしまう場合,現在の線分を消して点つなぎを終了する.

引くことの出来る線分の本数の期待値を $E$,分散を $V$ としたとき $V=f(E)$ となる整数係数多項式 $f$ がただ $1$ つ存在するので,$|f(1685)|$ の値を解答してください.

解答形式

半角数字で解答してください

問題6

Youteru 自動ジャッジ 難易度:
23日前

13

ボール100個をランダムに20人に分ける。10人が1組の生徒で、10人が2組の生徒である。ボールが全く貰えない人がいてもよい。全てのボールは区別できず、分け方は$ _{119}C_{19}$通りあるが、それぞれの分け方は同様に確からしい。
1組の生徒のうち、それぞれの持つボール数の総積をポイントとする。ポイントの期待値は互いに素なA,Bで$\frac{A}{B}$と表せるので、A+Bを解答せよ。

test

seven_sevens 採点者ジャッジ 難易度:
17月前

5

この問題は、コンテスト機能のテストをするために投稿します。大喜利でもどうぞ。
$$1+1=?$$

問題10

Youteru 自動ジャッジ 難易度:
23日前

9

Aさんは次のゲー厶を行った。
Aさんはコインを持っていない。
2つのボタンがある。片方を押すと$1/3$の確率でコイン、もう片方を押すと$2/3$の確率でコインが得られる。4050回ボタンを押して2025個のコインが得られるようにAさんが最善の行動をした際、Aさんは次の条件を満たした。
①4050回スイッチを押した後コインを2025持っていた。
②2n回スイッチを押した後コインをn個持っている、という状態が0以上3回以下発生した。(1≦n≦2024)
条件①②を同時に満たす確率をある既約分数$\frac{a}{b}$を用いて
$\frac{a}{b}×_{4050}C_{2025}×(\frac{2}{9})^{2025}$
と表せるので、a+bを求めよ。

問題15

Youteru 自動ジャッジ 難易度:
23日前

12

※この問題は人力で解けることを想定していない可能性があります。

平安時代には次のルールがある。
・男性が3日連続女性の家に通ったらその女性と結婚が成立する。
・男性が3年(1095日)間一切女性の家に通わなかったらその女性と離婚が成立する。
1人の男性が同時に女性と結婚できる人数は最大X人であり、女性の家に通いはじめてからX人の女性と結婚するのに必要な日数の最小値はY日である。XとYの10進数における文字列の結合を解答しなさい。ただし、1人の男性が1日に通える女性の家は1つだけである。
(寿命や重婚に対する刑罰は考慮しないものとする)