$20\times26$のマス目のいずれかにおせちが置かれており,太郎君はおせちが置かれていないいずれかのマスから,通るマスの数が最小となるようにおせちまで移動します. お年玉を太郎君が通ったマスの個数と定義するとき, おせちと太郎君の初期位置すべてについて,お年玉の総和を求めてください. ただし,最初のマスと最後のマスも通ったマスとみなします.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$10$進法での正整数$N$の桁和を$S(N)$とおきます. $2026=1013\times 2$, $2+0+2+6=(1+0+1+3)\times 2$ のように,$N=p\times q$と素因数分解できるときに, $S(N)=S(p)\times S(q)$と表せるような正整数$N$を今年の数とよびます. 4桁の今年の数のうち2026は小さい方から何番目か求めてください。
$3$ 点 $A,B,C$ はこの順で一直線に並んでおり,$AC,AB,BC$ を直径とする円をそれぞれ $\omega_1,\omega_2,\omega_3$ とし,点 $B$ を通る直線と $\omega_1,\omega_2,\omega_3$ の交点を,$P,Q,B,R,S$ の順に並ぶように定めると, $$AB<BC,\quad AB=\sqrt{390},\quad QB=18,\quad BR=24$$ が成り立ちました.このとき,互いに素な正整数 $m,n$ を用いて $PB:BS=m:n$ と表されるので,$m+n$ の値を解答してください.
$2 \times 6$ のマス目があります.全てのマスそれぞれに $0,2,6$ のうち一つを選んで書き込みます.以下の条件を満たすような書き込み方は何通りありますか. ・どの辺を共有して隣り合う $2$ マスについてもそれらに書き込まれた数の和がある非負整数 $a$ を用いて $2^a$ と表せる. ただし,回転・反転によって一致するものも区別します.
以下の操作を数字が$100$以下になるまで繰り返し行います. ・下$2$桁の数字を取り除き、残った数字にかける. たとえば,$2108$は,$21×8=168$となります. このとき、$2$回目の操作までに数字が$100$になる数を今年の数と呼ぶことにします. 今年の数のうち、2026は何番目に小さいですか? ただし、100は今年の数に含まれないものとします.
相異なる $1$ 桁の整数の組 $(A,K,E,O,M)$ について, $2026\times P=\overline{AKEOME}$ を満たす素数 $P$ の総和を求めてください.ただし,$A\neq 0$ であるものとします.
ある正整数 $n$ が今年の数であるとは $n=a^b-(a-1)^b$ とあらわせるような正整数の組 $(a,b)$ が存在しない数であるとします.例えば$2026$は今年の数です. このとき,$2026$以下の今年の数はいくつありますか.
以下の条件に従って数列 ${a_n}$ を定義するとき,$\displaystyle \sum_{n=1}^{2025} a_n$ の取りうる値の総和を求めよ. ・すべての正整数 $n$ に対し,$a_n$ は $0$ 以上の整数である. ・すべての正整数 $n$ に対し,$a_{2^n}=a_2^n$ を満たす. ・すべての正整数 $n$ に対し,$\displaystyle \sum_{k=1}^{n} a_k = \sum_{k=n+1}^{2n} a_k$ を満たす.
半角数字で入力してください。
$n$進法でも$n+1$進法でも$3$桁の回文数になるような正の整数をn-今年の数と定義します. たとえば,$2026$は$13$進法で$BCB_{(13)}$,$14$進法で$A4A_{(14)}$となるので13-今年の数です. すべての7-今年の数について,その総和を求めてください. ただし,$n$進法における$3$桁の回文数とはある正整数$X(1\le X\le n-1),Y(0\le X\le n-1)$を用いて$XYX_{(n)}$と表せる数のこととします.
全ての桁が偶数からなる正整数を今年の数とします.例えば $2026$ は今年の数です. $2026$ 以下の今年の数は全部でいくつありますか.
SKG学院の文化祭では,$1$から$10$の目が一つずつ書かれた十面体の歪んだダイスを配布しています.
このダイス$10$個に$1$から$10$までの番号をつけることにしました.
ここで以下のような事実が分かっています. また$1≦n≦10$を満たす任意の整数$n$について,番号$s$がついたダイスを一回振って$n$の目が出る確率を$a_{n^s}$と書くことにします.
・$a_{1^s}:a_{2^s}…a_{9^s}:a_{10^s}=1^s:2^s\cdots9^s:10^s$を満たす.
この$10$個のダイスを同時に一回振る時,出目の積の期待値を求めて下さい.
半角数字で入力して下さい.
$6106$以下の正整数$N$について以下のようにスコアを定める. スコア:整数$a,b(a≦b)$の組で$ab=N$を満たすようなものの個数. スコアが$2$となるような$N$は何通りありますか. 但し,以下に示す10000以下の素数表を用いてもいい. http://allthingsuniverse.com/jp/prime/10000.html
半角数字で入力してください.
以下の式を満たす正整数の組 $(x,y,z)$ すべてについて,$xyz$ の総和を求めてください. $$x^3+y^3+z^3+\dfrac{xyz}{16}=2026$$