$\sqrt[10] {10}$ の小数第一位の値を求めよ。
ただし, $\log_{10}{2}=0.3010$ とする。
答えを半角数字で入力してください。
青い三角形の面積が6のとき、外側の正方形の面積を求めてください。
なお、正方形と円は図中の赤で示した点で接します。
正方形の面積を半角数字で入力してください。
実数 $a,b,c$ が $a^2+b^2+c^2\leqq 1$ を満たして動くとき、
座標空間上の点 $(a+b+c, ab+bc+ca, abc)$ が動く領域を $D$ とする。
以下の問いに答えよ。
⑴ $yz$ 平面に平行な平面 $\pi_t\colon \ x=t$ と $D$ が共有点を持つような実数 $t$ の範囲を求めよ。
⑵ $t$ が⑴で求めた範囲にあるとき、平面 $\pi_t$ と $D$ の共通部分を $E_t$ とする。
このとき、 ある $t$ の関数 $m(t), M(t)$ および $t$ と $y$ の関数 $p(t,y),q(t,y)$ が存在して、
$$
\begin{eqnarray}
E^1_t &=& \{ (x,y,z)|\ x=t,\ m(t) \leqq y \leqq M(t) \}\\
E^2_t &=& \{ (x,y,z)|\ x=t,\ z^2+p(t,y)z+q(t,y)\leqq0 \}
\end{eqnarray}
$$
とおけば $E_t = E^1_t \cap E^2_t $ と表せる。このような $m(t), M(t), p(t,y),q(t,y)$ を求めよ。
⑶ $E_t$ の面積を $S(t)$ とおく。$t$ が⑴で求めた範囲にあるとき、$S(t)$ を $t$ の式で表せ。 ただし、 $E_t$ がただ一点からなるときは $S(t)=0$ であるとする。
⑷ $D$ の体積 $V$ を求めよ。
⑷のみ解答せよ。解は $V = \frac{\sqrt{(ア)}}{(イウ)}\pi$ と書ける。(ア)、(イウ)に当てはまる自然数をそれぞれ1,2行目に半角で入力せよ。ここでア,イ,ウの各文字には0から9までの整数のいずれかが入る。たとえば(ア)=3(イウ)=57 と解答する場合は、1行目に「3」、2行目に「57」と入力せよ。なお、根号の中身が最小になるように解答すること。
すべての複素数に対して定義され、複素数の値をとる関数 $f(z)$ は、すべての複素数 $z,w$ について
$$
f(z+w)=f(z)f(w)+zw ...(*)
$$
をみたすとする。以下の問いに答えよ。
⑴ すべての複素数 $z$ について $f(2)f(z)+z = f(1)f(z+1)+1$ が成り立つことを示せ。
⑵ $(*)$ をみたすような $f(z)$ をすべて求めよ。
⑵を解答したうえで、以下の空欄ア~エに当てはまる0~9の整数を順に並べて4桁の半角数字「アイウエ」を入力せよ。根号の中身が最小になるように解答せよ。
$|f(5+11i)|$ のとりうる値のうち最大のものは$(アイ)$, 最小のものは$(ウ)\sqrt{(エ)}$ である。
全長 $L$ mのリムジンが、下図のように直角に曲がったトンネルを、幅 $a(>0)$ mの道から幅 $b(>0)$ mの道へ曲がろうとしている。
このとき、リムジンがトンネルを曲がることのできる最大の全長 $L_{max}$ (m)を求めよ。なお、車の全幅は考えなくて良いものとする。
$a=5,b=6$のときの$L_{max}$の値を関数電卓を用いて計算せよ。答えは、小数第4位の数字を四捨五入したものを解答せよ。
ある | なし |
---|---|
$ | € |
+ | × |
? | ! |
「#」「%」「()」がそれぞれ「ある」「なし」のどちらであるかを、それぞれ一行目・二行目・三行目に答えてください。
それぞれの行は ある
なし
のいずれかで答えてください。
下の地図は,茨城県つくば市の領域 1 〜 6 を模式的に表したものである。
A - F
で入力してください。各行の番号が領域の番号に対応します。※正誤判定に不具合が生じていましたが、修正しました(2020/06/12 12:43)
関数 $f(x)$ を $f(x)=4x(1-x)$ で定義し、数列 $ \{ x_n \} $ $(n=1,2\dots)$ を、
$$
x_1=\sin^2{1}=0.708073418...,\ \ x_{n+1} = f(x_n) \ \ (n=1,2,...)
$$
で定める。このとき、 極限値 $\displaystyle \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n \log|f'(x_k)|$ を求めよ。
注: 角度の単位はラジアンを用いる。 $\log$ は自然対数を表すものとする。また、$\pi$ が無理数であることは認めてよい。
求めた極限値を小数で表し、絶対値の小数第4位を四捨五入したものに、必要ならば負号をつけて答えよ。すべて半角で入力すること。
例1: $2\pi = 6.2831...$と解答する場合には、「6.283」と入力せよ。
例2: $-\pi = -3.1415...$と解答する場合には、「-3.142」と入力せよ。
また、必要なら以下の自然対数の値を用いよ。
$\log2 = 0.6931..., \log3=1.0986... ,\log7 =1.9459...$