【補助線主体の図形問題 #122】
今週の図形問題です。今回は面積関係を問う問題です。想定解の計算量は大したことないのですが、いくぶん面倒かもしれません。じわじわと確定する面積を探しつつお楽しみください。
${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
数列 $a_n$ は,$a_1=\sqrt{2-2\cos{\left(\dfrac{882}{5}\right)^\circ}},a_2=1-2\cos{\left(\dfrac{882}{5}\right)^\circ}$ として,以下の漸化式を満たします.
$$a_{n+1}=\dfrac{(a_n)^2-1}{a_{n-1}}(n=2,3,4,\cdots)$$
このとき,$\lfloor (a_{49})^2\rfloor$ の値を求めてください.ただし,$-0.998027<\cos{\left(\dfrac{882}{5}\right)^\circ}<-0.998026$を用いても構いません.
$\lfloor (a_{49})^2\rfloor$ を解答してください.$\lfloor x\rfloor$ は$x$を超えない最大の整数です.
正五角形 $ABCDE$ があり,その中心を $O$ とします.線分 $BO$ 上に点 $F$ を,線分 $EO$ 上に点 $G$ をとり,三角形 $AFG$ の外接円と線分 $AB,AE$ との交点をそれぞれ点 $P,Q$ とすると,以下が成立しました.
$$\angle{FAG}=54^{\circ} , PB=28 , QE = 30$$
このとき,正五角形 $ABCDE$ の一辺の長さを求めてください.
ただし,正多角形の中心とはその正多角形の外接円の中心のことを表すとします.
答えは正整数 $a,b,c$ を用いて $a+\sqrt{b - \sqrt{c}}$ と表されるので,$a+b+c$ を解答してください.
【補助線主体の図形問題 #121】
今週の図形問題です。補助線が活躍するのはいつも通りで、さらに、手慣れた方なら暗算で解けてしまうかもしれません。ぜひ幅広く挑戦してもらえたら、と思います。
${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
次の条件を満たす正整数 $a,b$ の組を $1$ つ求め,$a,b$ をこの順につなげて解答してください.
・$a>150$
・$a-b=2^7$
・$a$ に登場する数字の集合を $X$,$b$ に登場する数字の集合を $Y$ ,$ab$ に登場する数字の集合を $Z$とすると(例: $a=1233445$ のとき $X={1,2,3,4,5}$),$|X|=3,Y\subset X,|Z|=3,X=Z$ が成立する.
条件を満たす正整数 $a,b$ の組を $1$ つ解答してください.