鋭角三角形 $ABC$ において,辺 $BC, CA, AB$ 上(端点除く)に点 $P, Q, R$ をとると,四角形 $AQPR$ は円 $\omega$ に内接し,点 $P$ で辺 $BC$ に接しました.点 $A$ における円 $\omega$ の接線と,直線 $BC$ の交点を $S$ とします.また,$AS$ と$QR$ の交点を $T$ ,$AP$ と $QR$ の交点を $U$ ,$AC$ の中点を $M$ ,円 $\omega$ の中心を $O$ とすると,以下が成り立ちました.
このとき,$AB$ の長さは,互いに素な正整数 $a, b$ と,平方因子をもたない正整数 $c$ を用いて,$\dfrac{a\sqrt{c}}{b}$ と表されるので,$a+b+c$ の値を解答してください.
答えは正整数になるので,半角数字で解答してください.
にゃんこ大戦争には,$10$ 体の基本キャラが存在します.そのキャラを図鑑と同じ順番で,$1, 2, \ldots , 10$ と番号を付けます.今、$1$ 番のキャラ(ネコ)が $512$ 体一列に並んでおり,以下の操作を $511$ 回行います.
最終的に,番号が $10$ であるキャラ(ネコ超人)が残るような、操作の行い方(順番)は $N$ 通りあります.$N$ が $2$ で割り切れる最大の回数を求めてください.
答えは正の整数値になるので、それを半角数字で解答してください。
∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。
解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8
nを一桁の自然数とする。xについての多項式、
∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt
について、x^6の係数を自然数にするようなnを求めなさい。
半角で一桁の数字を入力してください。
式1の時、式2の解を求めよ。
ただし、数の小さい順に答え、
答えが2つ以上ある場合、「,」を用いること。
例 2分の1と1の時は、1/2,1
$$
4a^{2}-4a=-1
$$
$$
(2a-2)^{10000}
$$
式1の時、式2の解を求めよ。
ただし、数の小さい順に答え、
答えが2つ以上ある場合、「,」を用いること。
例 2分の1と1の時は、1/2,1
$$
12a^{2}-a=1
$$
$$
16a^{2}-8a-9a^{2}-6a
$$
$a^2+b^2+c^2+d^2+e^2=13053769$を満たす自然数$(a,b,c,d,e)$の組を1つ求めよ。ただし、$a<b<c<d<e$とする。
a,b,c,d,e,fの順で、間を半角スペースで区切り解答してください。
(例)$(a,b,c,d,e)=(1,2,3,4,5)$だった場合
→1 2 3 4 5
正三角形$ABC$の内部の1点$P$は、$AP=5,BP=4,CP=3$を満たす。この正三角形の面積を求めよ。
互いに素な正整数$a,b$と平方因子をもたない正整数$c$、及び正整数$d$を用いて$\frac{b\sqrt{c}}{a}+d$と表せるので、$a+b+c+d$を解答してください。