$AB=60,BC=70,CA=80$の三角形$ABC$があり,内心を$I$としたとき
$AI$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
円に内接する四角形$ABCD$があり,対角線の交点を$P$とすると$AB=AD=24,AP=16$であった.
このとき$CP$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形$ABC$の重心$G$に関して$A$と対称な点を$D$とすると$4$点$ABDC$は共円であり,
$AB=6,BD=4$であった.このとき$AD$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形$ABC$の内心を$I$,$∠A$内の傍心を$J$とすると以下が成立した.
$BI=7,CI=15,IJ=25$
このとき$BC$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形$ABC$の外心を$O$とすると以下が成立した.
$AO=25,BC=48 $
このとき三角形$ABC$の面積としてあり得る最大値を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=30,AC=36$の三角形$ABC$があり線分$BC$上に$BDEC$の順に並び$BD:DE:EC=1:5:3$となるよう
点$D,E$をとると,線分$AB$と$AC$に接し点$D,E$を通る円が存在した.
このとき$BC$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形$ABC$の重心を$G$とすると$AB=5,AC=7,BG=2$であった.
このとき$CG$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=33,BC=41,CA=26$の三角形$ABC$の面積の$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=AC=90$の三角形$ABC$があり線分$BC$の中点を$M$とすると
三角形$ABC$の垂心$H$は線分$AM$を$4:1$に内分した.
このとき三角形$ABC$の面積の$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
外心を$O$とする三角形$ABC$があり線分$BC$上に点$D$をおくと以下が成立した.
$AD=CD,BD-CD=15,OB=24,OD=9$
このとき$AB$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形$ABC$の外心を$O$とする. $AO$を直径とする円と$AB$,$AC$の交点のうち$A$でないものをそれぞれ$D,E$とすると$DE=3,CD=5$であり四角形$BCED$は内接円を持ちました.
このとき三角形$ABC$の面積を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=15,AC=24$の鋭角三角形$ABC$があり内心を$I$,垂心を$H$とすると
$4$点$BCHI$は同じ円 $Γ$上にあった.このとき円 $Γ$の半径の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.