x≧0, y≧0, x|2x+y|+y|x-2y|=2を満たすとき、x+2yのとりうる値の最大値と最小値を求めよ。また、そのときのx,yの値も求めよ。
一行目に最小値、二行目に最大値を書いてください。 x+2yはx=○○, y=□□のとき最小値△ x=●●, y=■■のとき最大値▲ のように答える。 答えにルートが出る場合は、有理化はして答えること。また、”,”の後には空白はありません。
正方形 $ABCD$ があります.この対角線 $BD$ 上に点 $P$ を取ります.ただし,$BP<PD$ です.$P$ を中心とし$B$ を通る円と円 $APD$ が,直線 $BD$ に関し,点 $C$ と同じ側にある点 $Q$ で交わりました. $AB = 13, BQ = 10$ が成り立つ時,$QC$ の長さの $2$ 乗を求めてください.
非負整数で入力してください.
$p,q$を素数とする。 $pq(p+q)$が平方数となるものをすべて求めよ。
ありうる組$(p,q)$について$pq$の総和を半角数字で入力してください。
平面に重複なく$2N$個の点を打ち、任意の点を$2$個ずつ選んで$N$本の直線を作る。 ある打った$2N$個の点に対して、どの直線も交わらないような結び方の総数を$S(N)$とする。$S(N)$が取りうる$2025$以下の正整数値をすべて求めよ。 ただし、$N$は正整数とする。
$S(N)$が取りうる値の総和を半角数字で入力してください。
奇数回で当たる確率が $\dfrac{2}{n}$,偶数回で当たる確率が $\dfrac{3}{n}$のくじを$n$回引いた時,少なくとも1回当たる確率を $P_n$,1回以上当たった時,最初の当たりが奇数回で起こる確率を $Q_n$ とするとき,$\displaystyle\lim_{n\to\infty}Q_n$ を求めてください.
求める値は互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので, $a+b$ を解答してください. 数字は半角で入力してください.
次の定積分を求めよ。$$\int_{0}^{\frac{π}{2}}{\frac{dx}{1+tanx}}\quad$$
$θ$を媒介変数とし、次のように表される曲線$C$を考える。$$\begin{cases}x=θ-sinθ\\y=1-cosθ\end{cases}$$ $0≦θ≦2π$として、この曲線$C$の長さ$L$を求めよ。
次の問に答えよ。 $(1)$ $cos3θ=4cos^3θ-3cosθ$を示せ。 $(2)$ $cos4θ$を$cosθ$の整式で表せ。 $(3)$ $cos\frac{2}{7}π$が無理数であることを示せ。
次の空欄$(ア)~(エ)$に当てはまる数字をそれぞれ答えよ。 関数$f(x)$を$$f(x)=\frac{log(x)}{x}$$と定める。 $f(x)$は、$x=(ア)$で、極大値$\frac{(イ)}{e}$をとる。 また、$$\int_1^e{f(x)dx}\quad$$ の値は$\frac{(ウ)}{(エ)}$である。
ただし、対数は自然対数を表し、$e$は自然対数の底とする。
次の空欄$(ア)~(オ)$に当てはまる数字をそれぞれ答えよ。 数列{$a_{n}$}を次のように定める。 $$a_1=a_2=1,a_{n+2}-a_{n+1}+a_n=0 (nは自然数)$$この数列の一般項は
$a_n=\frac{(ア)}{\sqrt{(イ)}}$$sin\frac{nπ}{(ウ)}$ である。 また、$a_{2025}=(エ)$であり、$$\sum_{n=1}^{2025}{a_n}=(オ)\quad$$である。
$t$が実数全体を動くとする。 このとき、点$$(\frac{1}{1+t^2},\frac{t}{1+t^2})$$はどのような図形を描くか答えよ。
答えの図形が正確に分かるようにお答えください。
実数$x,y$が不等式$x^2+y^2=1$をみたすとき、$x+y$の最大値を求めよ。