$m$と書かれたカードからなるカードの束を$m$の束と呼ぶことにします。
$1$の束、$2$の束、$3$の束、$4$の束、$5$の束、$6$の束、$7$の束、$8$の束、$9$の束 が$1$つずつあります。
$A$さんは異なるカードの束を$9$つまで選び、その後$A$さんはこれらのカードの束に対して以下の操作を$n$回行います。
操作
選んだカードの束のうち一つを選びカードを$1$枚引く。
操作を$n$回終えた時点で$A$さんは$n$枚のカードを持っています。$A$さんは持っているカードに書かれている数字の総和と総積が等しくなるようにカードを引きたいです。
このようなカードの引き方が存在する束の選び方の総数を求めてください。
ただし、$n$は$2$以上の整数とし、カードの束にカードはいくらでもあるとします。
半角数字で入力してください。
三角形 $ABC$ について,その垂心を $H$ ,外心を $O$ とする.直線 $BH$ と直線 $AC$ との交点を $E$ ,直線 $CH$ と直線 $AB$ との交点を $F$ とすると,$3$ 点 $E,O,F$ は同一直線上にあった.$AH=8,AO=6$ のとき,四角形 $EFBC$ の面積の二乗の値を求めよ.
半角数字で入力してください。
三角形 $ABC$ について,線分 $BC$ の中点を $M$ とし,$\angle ABC$ の二等分線と直線 $AM$ との交点を $D$ とすると,以下が成立した.
$$BC=4,\angle ADB=\angle AMC=3\angle BAM$$このとき,線分 $AC$ の長さの二乗は正整数 $a,b$ を用いて $a+\sqrt b$ と表せるので,$a+b$ を解答せよ.
半角数字で入力してください。
任意の正整数 $m$ に対して $n^m-n$ が $10!$ の倍数であるような $10!$ 以下の正整数 $n$ の個数を求めよ.
半角数字で入力してください。
$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.
半角数字で入力してください(数字のみ)。
$a,n$ を正の整数とする.
$$\int ax^ne^xdx$$
の $e^x$ の係数が $2026!$ であるような $(a,n)$ の組は何個ありますか?
整数で解答してください
$a, b$ を実数とする。複素数 $z$ に対して
$$
f(z)=z^{2}+a z+b
$$
とおく。また,方程式 $f(z)=0$ のすべての解は $\lvert z\rvert \le 1$ を満たしている。
$(1)$ 点 $f(1+i)$ がとりうる範囲を複素数平面上に図示せよ。
$(2)$ 点 $w$ が虚軸上を動くとき,点 $f(w)$ がとりうる範囲を複素数平面上に図示せよ。
範囲を文章や不等式で表せば可とします。
例)・$3$点$1$,$1+i$,$-1+i$を頂点とする三角形の周及び内部。
・座標平面における不等式 $y\le x^2$が表す領域。