3/3 23:49 問題を一部変更しました.
下図で、$ABCD$は一辺$6$の正方形,$ADEFGH$は正六角形, $IBC$は正三角形です.$AI$と$BF$の公点を$J$としたときの三角形$FJI$の面積を求めてください.
半角の正整数で答えてください.
正方形$ABCD$の(辺を含まない)外部に点$P$をとったところ,以下が成り立ちました:
$$
\angle{ABP}=\angle{DBP}
$$
$$
PB=PC
$$
このとき、$\angle{PDA}$の大きさを求めてください.
$\angle{PDA}$は度数法で,互いに素な正整数$a$,$b$を用いて$\frac{a}{b}^\circ$と表されるので,$a+b$を半角数字で解答してください.
正整数 $N$ が $2$ で割り切れる最大の回数を $v_2 (N)$ で表すことにします.
(例 : $v_2(6) = 1, \ v_2(16) = 4$)
このとき,
$$\sum_{i = 1}^{1024} \sum_{j = 1}^{1024} \sum_{k = 1}^{1024} v_2 ( \textrm {gcd} (i, j, k))$$
の値を解答して下さい. ( $\textrm{gcd}(i,j,k)$ で $i,j,k$ の最大公約数を表しているとします.)
半角数字で解答して下さい.
以下の値を求めてください。
$$
\begin{align}
\sum_{k=1}^{33333^2+200\cdot33333}\sqrt{\frac{2k+19999-2\sqrt{k^2+19999k+99990000}}{k^2+19999k+99990000}}
\end{align}
$$
答えは互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表されるので、
$p+q$の値を解答してください。
(誰かがもう作ってそうです...知っている方がいれば教えてほしいです)
$f(n)=n ^{15}+21n^{10}+147n^5+343$ とします.
正整数 $n$ に対して, $f(n)$ が $5^m$ で割り切れるような最大の非負整数 $m$ を $g(n)$ と定めます.$10000$ 以下の正整数 $k $であって $g(n)=k $ を満たす正整数 $n$ が存在するような $k$ の総積を $3343$ で割った余りを解答してください.ただし,$3343$ は素数です.
非負整数を解答してください.
$a,b$を実数の定数とする。$x$についての方程式
$x^{10}+x^8+(1-2b)x^{6}-6x^4-2ax^3+b^2x^2+a^2+9=0$
の実数解を全て求めよ。また、その時の$a,b$の値を求めよ。
(x,a,b)=(1,1,1),(2,3,4)...という感じで半角で入力してください。(順不同)
±は使わないでください。
底ができるだけ小さくなるようにしてください。
また、m/n乗はa^(m/n)というふうに解答してください。例:3^(2/3),5^(7/8)など
次の関数 $x,y$ における定数 $c$ の命題「つねに $x\geqq 3$ ならば $y$ の値域幅は $c$ 以上」は真か.$$0\leqq t\leqq 2c,\quad x=|t-c|+|t-3|+|t-5|,\quad y=|||t-1|-2|-3|$$
逆,裏,対偶それぞれの整数反例の和を半角数字で入力してください.
$n$ を正の整数とする.縦 $3$ 行,横 $3$ 列からなるマス目の各マスに $n,n+1,\ldots,n+8$ を重複なく書き入れる方法であって,以下を満たすものの数を $f(n)$ とします.
ただし,回転や反転によって一致する数の書き込み方は,区別するものとします.$f(n)\lt3\times10^5$ を満たすとき,$f(n)$ としてあり得る最大の値を解答してください.