全問題一覧

カテゴリ
以上
以下

shoko_math

公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

競技数学

問題文

お笑いコンビ「さや香」の新山くんは以下のような「見せ算」という演算「$*$」を考案しました.

[見せ算の計算法]
$0$ 以上 $4$ 以下の整数 $a,b$ に対し,$a*b=\Bigg{\{}\begin{aligned}
0\ (a=bのとき) \\
a\ (a>bのとき) \\
b\ (a<bのとき)
\end{aligned}$

とし,$a*b$ を「 $a$ と $b$ の『眼』」と呼ぶ.

$0,1,2,3,4$ を $6$ 個ずつ左右一列に並べて得られる $M=\dfrac{30!}{({6!})^5}$ 通りの数列のうち,左に位置する $2$ 数を消し,その $2$ 数の『眼』をこの数列の左に書き込むという操作を $29$ 回繰り返した時,最後に $3$ が残るような $30$ 個の数の並べ方の総数を $N$ とします.このとき,$\dfrac{N}{M}$ は互いに素な正の整数 $p,q$ を用いて $\dfrac{q}{p}$ と表せるので,$p+q$ の値を解答してください.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$2023$ や $1231$ のように $2$ と $3$ がこの順に連続して表れる $4$ 桁の正の整数(すなわち,$1000$ 以上 $9999$ 以下の整数)の総和を求めてください.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 競技数学

問題文

$AB=20,CD=23,AD=12,BC=31$ を満たす四角形 $ABCD$ について,三角形 $ABD$ の内心を $I_1$ とし,三角形 $BCD$ の内心を $I_2$ とします.
$I_1I_2$ と $BD$ の交点を $X$ とすると $DX=\dfrac{12}{31}$ となったとき,$BX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

実数 $a,b,c,d$ が $\dfrac{a^2+b^2+2bc+2ca}{c^2+2ab}=\dfrac{b^2+c^2+2ca+2ab}{a^2+2bc}=\dfrac{c^2+a^2+2ab+2bc}{b^2+2ca}=d$ を満たすとき,$d$ の値として考えられるものの総和を求めてください.

解答形式

半角数字で解答してください.

nmoon

公開日時: 2024年1月1日13:52 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数

問題文

ある正整数 $n$ は以下の条件を満たしました.

  • 異なる素因数をちょうど $3$ つもつ.
  • $n$ の素因数を小さい順に $p_{1},p_{2},p_{3}$ とすると,$\displaystyle\frac{n+1}{p_{1}+1},\displaystyle\frac{n+1}{p_{2}+1},\displaystyle\frac{n+1}{p_{3}+1}$ が整数になる.

このとき,$n$ の最小値を求めてください.

解答形式

半角数字で正整数で答えてください.

追記:答えを訂正しました.miq氏にはご迷惑をおかけして申し訳ありません.

arc_sin

公開日時: 2024年1月1日0:45 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

2024^2023の正の約数の個数はいくつか?

解答形式

半角で回答
例)100

mahiro

公開日時: 2024年1月1日0:31 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

2024

問題文

$f(x)$ は $x$ が $3$ で割り切れる回数を示します.
このとき,$$f(\prod_{k=2}^{2024} \lfloor \log_2 k\rfloor )$$ を求めて下さい.

解答形式

一意の整数値に定まるので、それを半角で解答してください.

peparoni

公開日時: 2024年1月1日0:02 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

問題文

下図において,黒線の図形は正十五角形であり,青線の長さは $8$ ,緑線の長さは $6\sqrt{5} - 2 + 2\sqrt{6}\sqrt{5 - \sqrt{5}}$ です.
このとき,赤線の長さは,正整数 $a,b,c,d,e,f,g$ (ただし,$c,d,e,g$ は平方因子を持たない)を用いて $a - b\sqrt{c} + (\sqrt{d} + \sqrt{e})\sqrt{f-\sqrt{g}}$ と表せるので,積 $abcdefg$ の値を解答してください.

解答形式

余分な空白や改行を入れずに,半角数字のみを用いて解答してください.

tb_lb

公開日時: 2023年12月31日21:42 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 角度

【補助線主体の図形問題 #123】
 ご無沙汰ぶりの&2023年最後の図形問題です。今年も僕の出題を解いていただきありがとうございました。来年も引き続きよろしくお願いします。よいお年を!

解答形式

${
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

告知

${}$ 2024年も年始1月1日~7日に西暦を織り込んだ数学・パズルの問題をお送りする予定です。今回も虫食算からお目見えしようと思っています。どうぞよろしくお願いします!

natsuneko

公開日時: 2023年12月31日7:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

問題文

鋭角三角形 $ABC$ について, 垂心を $H$, 内心を $I$, 外心を $O$ とし, また, $C$ から $AB$ に下した垂線の足を $D$, $B$ から $AC$ に下した垂線の足を $E$, $A$ から $BC$ に下した垂線の足を $F$ とします. すると, $H,I,O$ は相異なり, かつ $AH=AO=10,HI:HO=41:80$ が成立しました. このとき, $DF+EF$ は互いに素な正整数 $a,b$ と平方因子を持たない正整数 $c$ によって, $\cfrac{b \sqrt{c}}{a}​​$ と表されるため, $a+b+c$ の値を解答して下さい.

解答形式

半角整数値で解答して下さい.

J_Koizumi_144

公開日時: 2023年12月30日3:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$8\times 8$のマス目に$1\times 2$のタイルと$1\times 1$のタイルを隙間なく並べる方法のうち,以下の条件を満たすものを考えます.

  • どの行にも$1\times 1$のタイルがちょうど$1$つ含まれる.

このような並べ方のうち,横向きの$1\times 2$のタイルの個数が最大となるものは何通りありますか?
ただし,回転や裏返しによって一致する並べ方は区別します.また,$1\times 2$のタイルが横向きであるとは,長辺が行に平行であることを指します.

解答形式

半角数字で入力してください.

MARTH

公開日時: 2023年12月28日7:41 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数

$0$ 以上 $6$ 以下の整数からなる組 $(a_1,a_2,a_3,a_4,a_5)$ のうち以下を満たすものの個数を求めてください.
$$(a_1a_2)^3+(a_2a_3)^3+(a_3a_4)^3+(a_4a_5)^3+(a_5a_1)^3\equiv0\pmod{7}$$