$O$ を原点とする座標空間において,点 $A(1,0,0)$ を通り,$\overrightarrow{\ell}=(1,1,1)$ に平行な直線を $\ell_0$,
$\overrightarrow{m}=(0,0,1)$ に平行な直線を $m_0$ とする.
また,円$$
C:\ x^2+y^2=1,\ z=0
$$上に相異なる2点 $L,M$ をとる.
点 $A$ が点 $L$ に一致するような $z$ 軸周りの回転移動によって$\ell_0$ が移る直線を $\ell_1$ とし,点 $M$ を通り $m_0$ に平行な直線を $m_1$ とする.
さらに,2直線 $\ell_1,m_1$ に対し,$\ell_1$ 上に点 $P$,$m_1$ 上に点 $Q$ を,
線分 $PQ$ の長さが最小となるようにとる.
ただし,$\ell_1,m_1$ が交わるとき,線分 $PQ$ はその交点であるとする.
相異なる2点 $L,M$ が円 $C$ 上を動くとき,線分 $PQ$ が通過しうる範囲を $K$ とする.$K$ の体積を求めよ.
答のみで構いません。
ウサギとカメが、$1000$ $\mathrm{m}$ の距離を競走した。カメは $5$ $\mathrm{m/}$分 の速度で出発し、休むことなく歩き続けた。しかし、進むにつれその速度は $1$ $\mathrm{m}$ 当たり $0.001$ $\mathrm{m/}$分 の割合で連続的に遅くなった。一方、ウサギは $200$ $\mathrm{m/}$分 の速度で走り続けたが、途中で一休みした。 競走の結果、カメはウサギよりも $1$ 分早くゴールした。このとき、ウサギは何分休んでいたか。
$\ln{2}=0.693, \ln{5}=1.609$ とし、整数(半角数字)で解答せよ。
$a, b$ を実数とする。複素数 $z$ に対して
$$
f(z)=z^{2}+a z+b
$$
とおく。また,方程式 $f(z)=0$ のすべての解は $\lvert z\rvert \le 1$ を満たしている。
点 $f(1+i)$ が複素数平面上でとりうる範囲の面積を求めよ。
$\alpha, \beta$ を複素数とし,$0$ でない複素数 $z$ に対して
$$
f(z)=\alpha z^{2}+z+\dfrac{\beta}{z}
$$
とおく。$\alpha, \beta$ は
$$
\lvert f(1)\rvert \le 2 \quad \text{かつ} \quad \lvert f(i)\rvert \le 2
$$
を満たしながら動く。ただし,$i$ は虚数単位である。
$\lvert f(1+i)\rvert$ の最大値を求めよ。
・左詰め、半角数字・記号
・根号は√ 、円周率はπを用いる
・項を無理にまとめる必要はない。項が2つ以上あるとき、値が大きい順に入力(通分しなくてよい)
例 √6+3π/10、 3√3+2√2/3+1/3
自然数列$\ a_n$を以下のようにして定める.
$$a_{n+1}=\lceil \sqrt{n} \rceil a_n+\lfloor \sqrt{n} \rfloor$$
ただし,$\ \lceil x \rceil \in \mathbb{N},\ x \le \lceil x \rceil <x+1\ ,\ \lfloor x \rfloor \in \mathbb{N},\ x-1 < \lfloor x \rfloor \le x$
です.
このとき,$\ a_{2026}\ $が$\ 5$ で割り切れる最大の回数を求めてください.
整数で解答してください.
$a,b$ を実数とする.$1$ 以上の実数 $k$ に対し,$x,y$ についての連立方程式
$$
\begin{cases}
k\cos x + \dfrac{1}{k}\sin y = a\\[6pt]
k\sin x + \dfrac{1}{k}\cos y = b
\end{cases}\
$$
が $0\le x\le\pi,\ 0\le y\le\pi$ の範囲に解をもつような点 $(a,b)$ の存在する領域を $D_k$ とし,$ab$ 平面における $D_k$ の面積を $S(k)$ とする.
$S(1)$ を求めよ.
・左詰め、半角数字・記号
・根号は√ 、円周率はπを用いる
・項が2つ以上あるとき、値が大きい順に入力(通分しなくてよい)
例 √6+3π/10、3+√3+π/2
以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします.
$$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください.
$$\sum_{k=1}^{100} {\alpha_k}^{100}$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの14番の問題の改題です.
以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします.
$$x^3-2^{2025}x^2+24x-2^{2023}=0$$
このとき,以下の値は整数になるので,その正の約数の個数を求めてください.
$$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの31番の問題と同じです.
以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします.
$$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください.
$$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの14番の問題と同じです.
円 $\Gamma$ に内接する不等辺三角形 $ABC$ について,その内心を $I$ とし,線分 $BC$ の中点を $M$ とします.線分 $AB,AC$ に接し $\Gamma$ に点 $T$ で内接する円が一意に存在するのでこの中心を $S$ とし,直線 $AI$ が $\Gamma$ と再び交わる点を $V$ とします.また,三角形 $STV$ の外心を $P$ とすると,線分 $IP$ 上の点 $H$ が以下を満たしました.
$$ \angle TAV = \angle HMI, \quad \angle THP = \angle TSV $$さらに, $SV = \sqrt{39}, \ MV = \dfrac{198}{53}$ が成り立つとき,三角形 $ABC$ の面積は互いに素な正の整数 $a,c$ および平方因子を持たない正の整数 $b$ を用いて $\dfrac{a \sqrt{b}}{c} $ と表せるので, $a+b+c$ の値を解答してください.
正の整数を半角で解答.