xy平面上に固定された円板C:x^2+y^2=1と、
CにA(1,0)で固定された長さ2π、もう一方の端点をPとする糸がある。
始めにP=Aとなるように糸を時計回りでCに巻き付ける。
ここで、Cと合同な円板C'をAで外接させ、
C’上の接点とPを接着する。
C'がCに接しながら糸を弛ませずに反時計回りに
Cを一周する。
(但し、始めからしばらくはC'に糸は巻きつかない)
Pの軌跡の長さを求めよ。
Xπ+Y(X,Yは有理数)の形になるので
X+Yを最もシンプルな形で答えよ。
(但し、X,Yは正の数とは限らない)
不正解となった場合、Xπ+Yもしくは簡単な方針を質問欄に入れてくれると助かります
ある三角形OABにおいて
  OP=sOA、OQ=tOBとなるように
 P,Qを半直線OA,OB上におく(0<s,t<1)
 そして、点Rを次のように定める
・Rは四角形ABQPの内部に存在し、
  |O-AB|:|O-PQ|=|R-AB|:|R-PQ|を満たす
(但し、|X-YZ|は点Xから直線YZへの距離とする)
このとき、s,tがs+t=1を満たしながら変動する。
Rの存在領域の面積を求めよ!!
〈(10D+E)√F−Gπ〉|△OAB|÷9√3と表せるので(D,E,F,Gは数字)、四桁の数DEFGを答えよ
$AB \lt AC$ を満たす鋭角三角形 $ABC$ の垂心を $H$,とする.直線 $BH, CH$ と三角形 $ABC$ の外接円との交点をそれぞれ $E (\not = B) , F (\not = C)$ とし,辺 $AB , AC$ と 線分 $EF$ との交点をそれぞれ $P , Q$ とする.直線 $AC$ に関して $P$ と対称な点を $R$,直線 $AB$ に関して $Q$ と対称な点を $S$ とし,三角形 $RSH$ の外心を $O$ とすると,以下が成立した.
$$ AH = 3 , BC = 4 , AO = 1$$
このとき,$AB$ の長さを求めてください.
互いに素な正整数 $b , c$ および正整数 $a$ を用いて $\dfrac{\sqrt{a} - b}{c}$ と表されるので,$a + b + c$ を答えてください.
単位立方体の内部からランダムに点を $2$ つ選んだときの平均距離を答えてください.
答えは最大公約数が $1$ である正の整数 $a,b,c,d,e$ と互いに素な正の整数 $f,g$ と平方因子を持たない正の整数 $h,i,j,k$ と正の整数 $l,m,n$ を用いて
$$\frac{a+b\sqrt{h}-c\sqrt{i}-d\pi}{e}+\frac{\ln(l+\sqrt j)}{m}+\frac{f\ln(n+\sqrt k)}{g}$$
と表されるので, $a+b+c+d+e+f+g+h+i+j+k+l+m+n$ を解答してください.
ただし, $\ln x$ は $x$ の自然対数を表します.
解説は用意していません
$AB \lt AC$ なる三角形 $ABC$ について,その外心を $O$ とし,線分 $BC$ 上に点 $D$ を $BD \gt CD$ となるように取ります. $B,C$ から直線 $AD$ に下ろした垂線の足をそれぞれ $X,Y$ とし, $X$ を通り直線 $AB$ に平行な直線と $Y$ を通り直線 $AC$ に平行な直線の交点を $Z$ とすると,三角形 $XYZ$ の外接円と三角形 $ABC$ の外接円は点 $T$ で接しました.また,直線 $BC$ について $O$ と対称な点を $S$ とすると,以下が成り立ちました.
$$ AS:AO:OD = 7:5:2$$このとき, $\dfrac{AT}{AO}$ の値は互いに素な正の整数 $a,b$ を用いて $\sqrt{\dfrac{a}{b}}$ と表せるので, $a+b$ の値を解答してください.
正の整数を半角で解答.