全問題一覧

カテゴリ
以上
以下

kiriK

公開日時: 2024年10月14日20:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


$
a!=b^{2}+2となる自然数a,整数bについて、
$
$
k(a,b)=a+bとおく。
$
$
k(a,b) の値として考えられるものは何個あるか。
$

kiriK

公開日時: 2024年10月14日20:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$
f(x,n)=x^{2^{n+1}}-x^{2^{n}}とおく。
$
$
f(a,b) と f(c,d) の最大公約数として
考えられるものの最小値を求めよ。
$
$
ただし、a,b,c,dはいずれも2以上の自然数で、a\neq b \neq c \neq d とする。
$

contrail

公開日時: 2024年10月12日11:49 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

方程式 $e^{nx}+x-2=0$ の正の解を$\alpha_n$とおきます.極限$\displaystyle \lim_{n\to \infty} (1+\alpha_n)^n$を求めて下さい.

解答形式

例)半角数字で解答して下さい.

YoneSauce

公開日時: 2024年10月12日8:53 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$$ \sum _{k=0}^{2024} \dfrac{{}_{2024}\mathrm{C}_{k}}{2k+1}(-1)^{k}$$
は互いに素な二つの整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せます. $p$ は $2$ で最大何回割り切れますか?

解答形式

非負整数を半角数字で答えてください

Uirou

公開日時: 2024年10月11日0:13 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 競技数学

問題文

$\triangle{ABC}$ は $AB=AC,∠{BAC}=40°$ を満たす。線分$BC$の中点$M$と$\triangle{ABC}$の内部の点$P$について、直線$AM$に関して直線$PM$を対称移動させた直線を$m$、$m$と直線$AP$の交点を$Q$とすると、$PB>PC,∠BPC=110°,∠AQM=15°$を満たしました。このとき、$∠PBC$の大きさを度数法で求めてください。ただし、答えは互いに素な正の整数$a,b$を用いて$(\dfrac{a}{b})°$と表されるので、$a+b$ を解答してください。

解答形式

例)半角数字で入力してください。

Tarotaro

公開日時: 2024年10月10日20:38 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

#数列 #数オリ

$$数列a_{n}を次のように定義する。$$$$a_{1}=1,a_{2}=1,$$$$a_{n+2}=\frac{a_{n+1}}{a_{n}}+\frac{a_{n}}{a_{n+1}}(n\in{\mathbb N} )$$$$また、a_{n}の和をS_{n}とおく。$$$$この時[S_{2025}]<4130を示せ。$$$$ただし[k]はk以下の最大の整数とする。$$

Shota_1110

公開日時: 2024年10月5日23:57 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正整数 $x, y, z$ が以下の等式を同時にみたすとき,積 $xyz$ の値としてあり得るものの総和を求めてください.

$$x + y + z = 48,x^2 + y^2 + z^2 = 1110$$

解答形式

半角英数にし,答えとなる正整数値を入力し解答して下さい.

y

公開日時: 2024年10月5日14:05 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
b<0のとき、\\4^{a+|b|}=16^{b+c}について、bの式で表してください。
$$

y

公開日時: 2024年10月5日13:13 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
a<0のとき、\\3log_416^{|a|}=log_b\sqrt{b^{24}}についての、aの値を求めてください。
$$

y

公開日時: 2024年10月4日7:47 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
log_24^a=log_b\sqrt{b^{12}}\\について、aの値を求めてください。
$$

you20240904

公開日時: 2024年10月3日13:44 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


xy平面上のにんいのn個の点に点をうつ。次にn個の点どうしをすべて線で結ぶ。このとき新たにできた交点の数をkとする。なお、L>=2のときL本の直線が一点で交わるとき交点の数は1/2*L(L-1)と数えるものとする。このときn=kとなるなら
とりうるnの値はいくつでしょう。

解答形式
数字だけ書いてください

G414xy

公開日時: 2024年10月1日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$(0,0),(4,0),(0,4),(4,4)$を頂点とする正方形を、頂点が全て格子点上にある三角形4つに分割する方法はいくつありますか。
回転や裏返しをして同じ形になるものも区別するものとします。

解答形式

半角数字で入力してください。