公開日時: 2024年10月11日0:13 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\triangle{ABC}$ は $AB=AC,∠{BAC}=40°$ を満たす。線分$BC$の中点$M$と$\triangle{ABC}$の内部の点$P$について、直線$AM$に関して直線$PM$を対称移動させた直線を$m$、$m$と直線$AP$の交点を$Q$とすると、$PB>PC,∠BPC=110°,∠AQM=15°$を満たしました。このとき、$∠PBC$の大きさを度数法で求めてください。ただし、答えは互いに素な正の整数$a,b$を用いて$(\dfrac{a}{b})°$と表されるので、$a+b$ を解答してください。
例)半角数字で入力してください。
公開日時: 2024年10月5日23:57 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
正整数 $x, y, z$ が以下の等式を同時にみたすとき,積 $xyz$ の値としてあり得るものの総和を求めてください.
$$x + y + z = 48,x^2 + y^2 + z^2 = 1110$$
半角英数にし,答えとなる正整数値を入力し解答して下さい.
公開日時: 2024年10月3日13:44 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
xy平面上のにんいのn個の点に点をうつ。次にn個の点どうしをすべて線で結ぶ。このとき新たにできた交点の数をkとする。なお、L>=2のときL本の直線が一点で交わるとき交点の数は1/2*L(L-1)と数えるものとする。このときn=kとなるなら
とりうるnの値はいくつでしょう。
解答形式
数字だけ書いてください