全問題一覧

カテゴリ
以上
以下

iwashi

公開日時: 2025年9月23日13:43 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

次の文章の$\fbox{1},\dotsc,\fbox{6}$に当てはまる数を求めよ。


$$
a_{n} = \int_{1}^{e^{0.1}}(\log{x})^{n}dx \qquad (n=0,1,2,\dotsc)
$$とする。部分積分法を用いることで,漸化式
$$
a_{n} = (\fbox{1})^{n}\cdot e^{\fbox{2}} - na_{n-1} \qquad (n\geq1)
$$を得る。$a_{3}$は,有理数$\fbox{3},\fbox{4}$を用いて
$$
a_{3} = \fbox{3}e^{\fbox{2}}+\fbox{4}
$$と表せる。$1\leq x\leq e^{0.1}$のとき$0\leq(\log{x})^{n}\leq0.1^{n}$より$0\leq a_{n}\leq(e^{0.1}-1)\cdot0.1^{n}$である。$n=3$に対してこの不等式を用いることにより$e^{-0.1}$を小数点第4位まで求めることができる。$e^{-0.1}$の小数点第5位以下を切り捨てた小数点第4位までの値は$\fbox{5}$である。

また,$\displaystyle b_{n}=\frac{(-1)^{n}e^{-0.1}}{n!}a_{n}$とすることで$a_{n},b_{n}$の一般項は容易に求められる。
$$
0 \leq |b_{n}| = \frac{e^{-0.1}a_{n}}{n!} < \frac{1-e^{-0.1}}{10^{n}\cdot n!}
$$より,はさみうちの原理から$\displaystyle\lim_{n\to\infty}|b_{n}| = 0$,つまり
$$
\sum_{n=0}^{\infty}\frac{(-0.1)^{n}}{n!} = e^{\fbox{6}}
$$が求められる。

解答形式

$\mathrm{i}=1,\dotsc,6$に対し,$\fbox{i}$に当てはまる数を$\mathrm{i}$行目に半角で答えてください。例えば,$\fbox{1},\dotsc,\fbox{6}$にそれぞれ$1.2,3.45,-6,7.89,1.2356,-2.3$が当てはまるときは

1.2
3.45
-6
7.89
1.2356
-2.3

と解答してください。

MARTH

公開日時: 2025年9月22日1:46 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


各頂点の重みが $1$ または $2$ である根付き $2$ 分木で、各頂点の重みの総和が $n$ になるもののうち重みが $2$ である頂点の数が偶数個であるものの個数を $X_n$ ,奇数個であるものの個数を $Y_n$ とするとき $X_{100}-Y_{100}$ を求めてください。
 ただし, 各頂点について右の辺の子と左の辺の子は区別するものとします.

tan

公開日時: 2025年9月21日16:16 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

数列{$a_{n}$}が, $a_{1}$=$1$,$a_{n+1}=\frac{na_{n}}{(n+1)(1+a_{n})}$ をみたす。
$$
\lim_{n\to \infty}\left(\frac{a_{n}}{a_{n+1}}\right)^n
$$
を求めてください。

解答形式

半角英数字で答えてください

ulam_rasen

公開日時: 2025年9月20日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

外接円を$\Omega$, 内心を$I$とする鋭角三角形$ABC$について, 円$Γ$は円$\Omega$に内接し, 辺$AC$, 辺$BC$にも接しています. 円$\Gamma$と円$\Omega$, 辺$AC$との接点をそれぞれ$T, D$とし, 直線$TD$と円$\Omega$の交点を$M(\neq T)$, 直線$AI$との交点を$F$, 直線$TI$と直線$AB$, 円$MDI$の交点をそれぞれ$G$, $K(\neq I)$とします. さらに, 円$MDI$内に点$H$をとったところ, これは円$TAK$上にありました. また, 円$GHK$と直線$MK$の交点を$J(\neq K)$とすると, 直線$GJ$, 直線$AK$, 円$TAD$が一点で交わったのでこれを$L$とします.
$$
FG=FH, MJ:KJ=1:3, LJ=30
$$
が成立するとき, 線分$IK$の長さを二乗した値を求めてください.

ulam_rasen

公開日時: 2025年9月20日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

問題文

$AB>AC$を満たす鋭角三角形$ABC$の外心を$O$, $\angle BAC$の二等分線と直線$BO$の交点を$D$とします.
円$ABC$について弧$BAC$の中点を$M$とし, 直線$AB$と直線$CM$の交点を$E$とすると以下が成り立ちました.
$$
\angle ADE=\angle AME, AE=25, BE=96
$$
このとき, 辺$AC$の長さは互いに素な正整数 $a,b$ を用いて$\Large\frac{a}{b}$と表せるので $a+b$ の値を解答してください.

ulam_rasen

公開日時: 2025年9月20日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

鋭角三角形$ABC$について, 外接円を$Ω$, 垂心を$H$, 辺$BC$の中点を$M$, 点$H$から直線$AM$に下ろした垂線の足を$K$とします. 直線$BH, CH$と$Ω$の交点をそれぞれ$E(\neq B), F(\neq C)$とし, 線分$EF$の中点を$N$とします. さらに, 辺$AC$上(端点を除く)に点$P$をとると以下が成立しました.
$$
\triangle FNP \backsim \triangle AMC, \angle PFA=\angle BAM, BK=5
$$

このとき, 線分$PE$の長さの二乗としてありうる値の総和を求めてください.

ulam_rasen

公開日時: 2025年9月20日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

半径が$14$の円$Ω$に内接し, $AB>AC$を満たす鋭角三角形$ABC$について, 内心を$I$, $A$傍心を$J$とする. 辺$AJ$の垂直二等分線と$Ω$の交点の内, 点$C$側にあるものを$D$, $B$側にあるものを$E$とし, 三角形$JBC$の外接円と三角形$JDE$の外接円の交点を$X(\neq J)$としたところ, 以下が成り立った.
$$
CX:CD=8:3, AI=10
$$

辺$BC$と辺$DE$の交点を$F$としたときの線分$XF$の長さの二乗を求めてください.

ulam_rasen

公開日時: 2025年9月20日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

辺$AB$と辺$BC$と辺$CD$の長さが等しい凸四角形$ABCD$について, 辺$BC$と辺$AD$の中点をそれぞれ$M$, $N$としたところ, 以下が成り立ちました.
$$
\angle BAD=75°, \angle CDA=45°, MN=3
$$

このとき, 四角形$ABCD$の面積は正整数$a, b$を用いて$a+\sqrt{b}$ と表すことができるので, $a+b$ の値を求めてください.

ulam_rasen

公開日時: 2025年9月20日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

正三角形$ABC, DEF$について, 三点$A, F, E$がこの順に同一直線上に並んでいます. また, 線分$AD$と線分$BE$の交点が存在したのでこれを$X$とすると三点$F, C, X$はこの順に同一直線上に並びました. 直線$BC$と直線$AE$の交点を$Y$としたとき, 以下が成立しました.
$$
\angle CAE=\angle BEA, AD=AY, DX=1
$$
このとき, 線分$AD$の長さの値の最小多項式を$f$とします. $f(5)$の値を求めてください.


最小多項式とは

$m$を根にもつ有理数係数多項式のうち, 次数が最小であり, かつ最高次の係数が$1$であるものを(このようなものは一意に存在します), $m$の最小多項式とよびます.

ulam_rasen

公開日時: 2025年9月20日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

$AB>AC$を満たす鋭角三角形$ABC$の外接円を$Ω$, 辺$BC$の中点を$M$とします. 点$B,C$から対辺に下した垂線の足をそれぞれ$E, F$とし, 直線$EF$と$Ω$の交点を$P, Q$とします. ただし, 四点$P, E, F, Q$はこの順に並ぶものとします. 円$MEF$と直線$MQ$の交点を$L(\neq M)$としたところ直線$AL$と直線$PM$が$Ω$上で交わりました.
$$
QL=PM=20
$$

が成立するとき, 線分$AP$の長さを二乗した値を求めてください.

ulam_rasen

公開日時: 2025年9月20日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

正方形$ABCD$について, 直線$BC$上に点$E$を点$B, C$と重ならないようにとり, 正方形$AEFG$を正方形$ABCD$と向きが同じになるようにとります. 線分$CF$の長さが$8$のとき, 正方形$ABCD$と正方形$AEFG$の面積の差として考えられる値の総和を求めてください.

smasher

公開日時: 2025年9月17日11:14 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

ある非負整数$n$に対し、$f(n)$で$n$の各桁の積を表すものとする。
$n=f(n)$を満たす$n$の個数を求めよ。

解答形式

有限ならば半角数字でその個数を、無限ならば$-1$を入力してください。