3桁の正の整数 n が次の条件を満たす:
このような n を求めなさい。
(解答は整数を1つ、例:123
)
3桁の正の整数 n が次の条件を満たす:
このような n を求めなさい。
(解答は整数を1つ、例:123
)
問題文を入力してください
例)ひらがなで入力してください。
3桁の正の整数 n が次の条件を満たす:
このような n を求めなさい。
(解答は整数を1つ、例:123
)
問題文を入力してください
例)ひらがなで入力してください。
3桁の正の整数 n が次の条件を満たす:
このような n を求めなさい。
(解答は整数を1つ、例:123
)
題文
問題文を入力してください
例)ひらがなで入力してください。
問題文を入タイトル:立方数の一歩手前と素数反転(競技)
3桁の正の整数 $n$ が次の条件を満たす:
このような $n$ を求めなさい。
(解答は整数を1つ、例:123
)
力してください
例)ひらがなで入力してください。
$i=1, 2, \ldots, 999$ に対して,数 $i$ が書かれたカードがそれぞれ $1001$ 枚あり,同じ数が書かれたカードは区別しないものとします.これらを左右 $1$ 列に並べる方法であって,次の条件を満たすカード $X$ がちょうど $1$ 枚あるようなものが $N$ 通りあるものとします.
カード $X$ は一番右のカードではない
カード $X$ に書かれた数は,カード $X$ の右隣のカードに書かれた数より大きい
$N$ を $997$ で割った余りを求めてください.
半角数字で解答してください.
正の整数 $n$ について,$f(n)$ を $_n\mathrm{C}_k$ が奇数であるような,$0\leq k\leq n$ を満たす整数 $k$ の個数とする.$$f(a)^2+4f(b)=f(c)^3+4$$ かつ $a+b+c=2047$ を満たす正の整数の組 $(a,b,c)$ はいくつ存在するか?
素数の組 $(p, q, r, s, t)$ について
$$\dfrac{p^4 + q^4 + r^4 + s^4 + t^4 + 340}{8}$$ としてありうる最小の素数値を求めよ.
円に内接する四角形 $ABCD$ について,線分 $AC$ はその直径をなす.線分 $BD$ の中点を $M$ とすると $AM=AD, BD=12, CD=13$ が成立した.線分 $BC$ の長さの二乗を求めよ.
任意の正の整数 $m, n(m\leq n)$ について $\displaystyle |\sum_{i=m}^{n} a_i| \leq 2$
が成り立つような整数列 $a_i (i\geq 1)$ について,$(a_1, a_2, …, a_{100})$ としてありうる組は $N$ 個存在する.$N$ を素数 $97$ で割った余りを求めよ.
訂正: 「非負整数列」と誤りがありましたが,正しくは整数列です.申し訳ありません.