公開日時: 2026年2月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形ABCの
Pを線分AB上にABを2:3に内分するように、
Qを直線BC上にBCを1:2に外分するように、
Rを直線AC上に取ったところ、
P,Q,Rは一直線上にありました
この時、AR/CRの値を求めてください。
解答する値は互いに素な自然数(a,b)を用いてa/bと表せるので、a+bの値を求めてください
公開日時: 2026年2月4日1:46 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
円に内接する四角形 $ABCD$ があり,$\angle ABC = 90^\circ$ をみたしている.$2$ 点 $A , C$ を通り直線 $AB$ に接するような円と線分 $BD$ の交点を $E$ とすると,$CD = CE$ が成立した.$BE = 7 , ED = 9$ であるとき,線分 $AB$ の長さの2乗を求めよ.
半角数字で解答してください.
公開日時: 2026年2月2日17:29 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB=44,AC=46$ をみたす三角形 $ABC$ があり, $AB,AC$ の中点を $M,N$ とする. 三角形 $ANB$ の外接円と三角形 $AMC$ の外接円の $A$ でない交点を $P$ とすると $P$ が線分 $BC$ 上に存在した.
このときの線分 $BC$ の長さを求めよ
$BC^2$ は正の整数値になるので, その値を半角で解答してください
公開日時: 2026年1月23日18:57 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
鋭角三角形 $ABC$ の垂心を $H$ $,$ $A,B,C$ から対辺に下ろした垂線の足をそれぞれ $D,E,F$ とし $,BC$ の中点を $M$ とする$.$ 直線 $AM$ 上に $\angle APH=90 ^。$ となる点 $P$ をとり$,$ 直線 $DE$ と直線 $FP$ の交点を $Q$ とする $.$
また $,$ 三角形 $AHC$ の外接円と三角形 $ABM$ の外接円との交点を$R$ $,$ 三角形$AHC$の外接円と線分 $DE$ の交点を$S$ とする $.$
$$AM:AS=\sqrt{3}:\sqrt{2} AQ=11 QR=7$$
が成り立つとき, $BC$ の長さを求めよ.
$BC^2$ は正の整数値になるので,その値を半角で解答してください.
公開日時: 2026年1月23日18:54 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ があり, 辺 $BC$ の中点を $M$ とします. $B$ から直線 $AM$ に下した垂線の足を $X$ とすると,$A,X,M$ はこの順にあり
$$AX=9 XM=2 \angle{BAM}=\angle{XCB}$$
が成立しました. $AC^2$ を求めてください.
答えは正の整数値になるので,半角で解答してください
公開日時: 2026年1月7日16:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
AさんとBさんは、黒板をつかって次のようなゲームをします。
ルール
・自分のターンでは、黒板に書かれている$1$以外の正整数を一つ選び、分割を行う。
自分のターン開始時に分割できる数がない場合敗北となる。
・分割...その数を$2$つ以上の正整数の和に分解すること。たとえば、$5$は$(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1)$のいずれかに分割される。
はじめ、黒板には$1024$以下の正整数$X,Y,Z$が書かれています。Aさんから操作を開始し、両者が最適戦略をとりつづけるとき、Bさんが勝つような$(X,Y,Z)$の組の個数を求めなさい。
公開日時: 2026年1月7日0:26 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
数列${a_n},{b_n},{c_n}$を
$a_1=300,b_1=400,c_1=500$
$a_{n+1}=\dfrac12\sqrt{2b_n^2+2c_n^2-a_n^2}$
$b_{n+1}=\dfrac12\sqrt{2c_n^2+2a_n^2-b_n^2}$
$c_{n+1}=\dfrac12\sqrt{2a_n^2+2b_n^2-c_n^2}$
で定めるとき、3辺を$a_n,b_n,c_n$とする三角形の面積を$S_n$とする。
この三角形が退化しないことは証明できるので、$S_8$の値を求めよ。ただし、求めるべき値は互いに素な正整数$a,b$を用いて$\dfrac a b$と表せるので$a+b$を解答せよ。
公開日時: 2026年1月4日11:13 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$n$進法でも$n+1$進法でも$3$桁の回文数になるような正の整数をn-今年の数と定義します.
たとえば,$2026$は$13$進法で$BCB_{(13)}$,$14$進法で$A4A_{(14)}$となるので13-今年の数です.
すべての7-今年の数について,その総和を求めてください.
ただし,$n$進法における$3$桁の回文数とはある正整数$X(1\le X\le n-1),Y(0\le X\le n-1)$を用いて$XYX_{(n)}$と表せる数のこととします.