数学の問題一覧

カテゴリ
以上
以下
4月前

0

問タイトル:立方境界・反転・整合の三位一体

3桁の正の整数 n が次の条件を満たす:

  1. n + 1 は完全立方数である。
  2. n の十進表記を反転して得られる整数 r は素数である。
  3. |n − r| / 9 は素数である。
  4. n は 7 の倍数である。

このような n を求めなさい。
(解答は整数を1つ、例:123
題文
問題文を入力してください

解答形式

例)ひらがなで入力してください。

4月前

0

問題文

問題文を入タイトル:立方数の一歩手前と素数反転(競技)

3桁の正の整数 $n$ が次の条件を満たす:

  1. $n+1$ は完全立方数である。
  2. $n$ は 7 の倍数である。
  3. $n$ の十進表記を逆から読んで得られる整数(反転数)が素数である。

このような $n$ を求めなさい。
(解答は整数を1つ、例:123
力してください

解答形式

例)ひらがなで入力してください。

OMCE017E 原案(300くらい)

Nyarutann 自動ジャッジ 難易度:
4月前

2

問題文

$i=1, 2, \ldots, 999$ に対して,数 $i$ が書かれたカードがそれぞれ $1001$ 枚あり,同じ数が書かれたカードは区別しないものとします.これらを左右 $1$ 列に並べる方法であって,次の条件を満たすカード $X$ がちょうど $1$ 枚あるようなものが $N$ 通りあるものとします.

  • カード $X$ は一番右のカードではない

  • カード $X$ に書かれた数は,カード $X$ の右隣のカードに書かれた数より大きい

$N$ を $997$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

素因数分解だよ

udonoisi 自動ジャッジ 難易度:
4月前

12

問題文

$56076923$ の素因数の総和を求めてください.
ただし, 重複する素因数は異なるものとして考えます.

解答形式

例)非負整数を答えてください.

PDC008.5 (H)

poinsettia 自動ジャッジ 難易度:
4月前

23

問題文

正の整数 $n$ について,$f(n)$ を $_n\mathrm{C}_k$ が奇数であるような,$0\leq k\leq n$ を満たす整数 $k$ の個数とする.$$f(a)^2+4f(b)=f(c)^3+4$$ かつ $a+b+c=2047$ を満たす正の整数の組 $(a,b,c)$ はいくつ存在するか?

PDC008.5 (B)

poinsettia 自動ジャッジ 難易度:
4月前

53

問題文

$\{1,2,…,9999\}$ の部分集合 $S$ であり,任意の $S$ の要素 $a,b(a\neq b)$ について $a+b$ を行ったときに繰り上がりが起きない(どの桁も $10$ を超えない)ようなものについて,その要素数の最大値を求めよ.

PDC008.5 (F)

poinsettia 自動ジャッジ 難易度:
4月前

18

問題文

任意の正の整数 $m, n(m\leq n)$ について $\displaystyle |\sum_{i=m}^{n} a_i| \leq 2$
が成り立つような整数列 $a_i (i\geq 1)$ について,$(a_1, a_2, …, a_{100})$ としてありうる組は $N$ 個存在する.$N$ を素数 $97$ で割った余りを求めよ.

訂正: 「非負整数列」と誤りがありましたが,正しくは整数列です.申し訳ありません.

PDC008.5 (A)

poinsettia 自動ジャッジ 難易度:
4月前

66

問題文

$1$ の位が $0,1,2,…,9$ であるような正の約数をすべて持つ最小の正の整数を求めよ.

PDC008.5 (G)

poinsettia 自動ジャッジ 難易度:
4月前

10

問題文

鋭角三角形 $ABC$ について線分 $AC$ 上に点 $P$ を取り,線分 $PC$ の垂直二等分線と線分
$BC$ が交わったのでその点を $D$ とする.線分 $AB$ 上の点 $E$ が $ED\parallel AC$ を満たしている.三角形 $PED$ の外接円と線分 $BC$ が $D$ でない点 $F$ で交わっており,$$FA=FC=7, BD=4, PD=5$$ が成り立った.このとき,線分 $AC$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

PDC008.5 (C)

poinsettia 自動ジャッジ 難易度:
4月前

36

問題

$a,b$ を実数とする.$f(x)=x^4+ax^3+bx^2+ax+1$ は $f(1/2)\cdot f(1/3)=4$ を満たしている.$f(2)+f(3)$ としてありうる最小の正の整数値を求めよ.

PDC008.5 (E)

poinsettia 自動ジャッジ 難易度:
4月前

35

問題文

素数の組 $(p, q, r, s, t)$ について
$$\dfrac{p^4 + q^4 + r^4 + s^4 + t^4 + 340}{8}$$ としてありうる最小の素数値を求めよ.

PDC008.5 (D)

poinsettia 自動ジャッジ 難易度:
4月前

28

問題文

円に内接する四角形 $ABCD$ について,線分 $AC$ はその直径をなす.線分 $BD$ の中点を $M$ とすると $AM=AD, BD=12, CD=13$ が成立した.線分 $BC$ の長さの二乗を求めよ.