数学の問題一覧

カテゴリ
以上
以下

800A

MARTH 自動ジャッジ 難易度:
6月前

16

正の整数 $m$ に対し,
$$f(m)=\sum_{k=0}^m(k+1)k2^k\frac{(2m-k-1)!}{(m-k)!}$$
と置きます.このとき, $f(5000)$ を素数 $5003$ で割った余りを求めてください.

サイコロ

YoneSauce 自動ジャッジ 難易度:
6月前

0

問題文

それぞれの面に $1,2,3,4,6,9$ が書かれたどの面も等確率に出る $6$ 面サイコロ $D$ があります.
$D$ を $1018$ 回転がしたときを考える.その出た目の総積を $T$ とし,そのときのスコアを以下のように定義します.

  • $T$ が平方数のとき, $T$ の正の約数の個数をスコアとする.
  • $T$ が平方数でないとき, $T$ の正の約数のうち $6$ の倍数であるものの個数をスコアとする.

スコアの期待値が非負整数 $A$ を用いて $\dfrac{A}{6^{1018}}$ と表せるので $A$ を素数 $1013$ で割ったあまりを求めてください.

解答形式

半角数字で非負整数を入力してください。

内接円, 外接円, 傍接円

tori9 自動ジャッジ 難易度:
6月前

14

問題文

三角形 $ABC$ の内心と外心をそれぞれ $I, O$ としたところ,$AI=AO$ が成り立ちました.三角形 $ABC$ の内接円,外接円の半径がそれぞれ $142, 857$ であるとき,$\angle{A}$ 内の傍接円の半径を求めてください.

解答形式

例)答えは互いに素な正整数 $a, b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.

13,14,15

U.N.Owen 自動ジャッジ 難易度:
6月前

13

円 $\Omega$ に内接する三角形 $ABC$ があり,$AB=13,BC=14,CA=15$ を満たしています.
 線分 $BC$ の中点を $M$,$A$ を通り直線 $BC$ と直交する直線と $\Omega$ との交点のうち $A$ でない方を $D$ とします.
 直線 $AM,DM$ と $\Omega$ との交点のうちそれぞれ $A,D$ でない方を $P,Q$ とし,直線 $BC$ と直線 $PQ$ との交点を $R$ とするとき,三角形 $MQR$ の面積は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.

14

U.N.Owen 自動ジャッジ 難易度:
6月前

23

どの桁の数も $2$ 以下の非負整数であるような $14$ 桁の正の整数のうち,$7$ の倍数であるようなものの個数を答えてください.

600A

MARTH 自動ジャッジ 難易度:
6月前

25

$N=9000^2\times 9001$ とし, 以下の条件を満たす整数の組の列 $(x_0,y_0,z_0), (x_1,y_1,z_1) ,\dots,(x_{N},y_{N},z_{N})$ を良い列 と呼びます.

  • $(x_0,y_0,z_0)=(x_{N},y_{N},z_{N})=(0,0,0)$.
  • $n=1,2,\dots,N$ について, $(x_n-x_{n-1},y_n-y_{n-1},z_n-z_{n-1})$ は $(1,-1,0)$ の $6$ 通りの並べ替えまたは $(0,0,0)$ のいずれかに等しい.

このとき良い列について $(x_i,y_i,z_i)=(x_{i-1},y_{i-1},z_{i-1})$ を満たす $i\;(i=1,2,\dots,N)$ の個数を $k$ としたとき $2^k$ をその列の 良さ とします. 良い列すべてについてその良さの総和を $S$ とします. このとき $S$ を素数 $8999$ で割った余りを求めてください.

整数の剰余

mahiro 自動ジャッジ 難易度:
6月前

15

問題文

以下によって定義される整数 $N$ を素数 $13907$ で割った余りを求めてください.$$N=\prod_{k=1}^{13906} (k^2+2025)$$

解答形式

13906以下の非負整数で解答してください

整数問題

Ryomanic 自動ジャッジ 難易度:
6月前

8

問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。
(似た問題を投稿しています。解答する場所を間違えないように注意してください。)

解答形式

互いに素な正整数p,qを用いてp/qと表せるため
p+qを解答してください。

整数問題

Ryomanic 自動ジャッジ 難易度:
6月前

10

問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。

解答形式

互いに素な正整数q,pを用いて
p/q と表せるため、p+qを解答してください。

第2回琥珀杯 A

Kohaku 自動ジャッジ 難易度:
6月前

5

問題文

円$C_1:x^2+(y−\sqrt{6})^2=2$及び円$C_1$と$x$軸について対称な円$C_2$をとる。さらに、2点$(0,\sqrt{6}−\sqrt{2}),(0,−\sqrt{6}+\sqrt{2})$を通り$x$軸に垂直で、原点を中心とする円$C_3$をとり、円$C_2$の中心を通り$xy$平面に垂直な直線を$l$とする。円$C_3$を直線$l$周りに$360°$回転させてできる立体の体積を求めよ。

解答形式

正整数$a,c,e$と平方因子をもたない正整数$b,d$を用いて$(a\sqrt{b}−c\sqrt{d})π^e$と表せるので、$a+b+c+d+e$を解答してください。

第2回琥珀杯 D

Kohaku 自動ジャッジ 難易度:
6月前

8

交わらない$2$円$O_1,O_2$は直線$m$に同じ側で接しており、その反対側に交わらない$2$円$O_3,O_4$が直線$m$に接している。円$O_x(x=1,2,3,4)$の半径を$x$、直線$m$との接点を$P_x$とすると、点$P_1,P_4,P_2,P_3$がこの順に並んだ。$P_1P_4=P_2P_3=5,P_2P_4=3$のとき、四角形$O_1O_2O_3O_4$の面積を求めよ。

第2回琥珀杯 C

Kohaku 自動ジャッジ 難易度:
6月前

15

$10^{n^n}$を$998$で割った余りが$512$となる最小の自然数$n$を求めよ。