数学の問題一覧

カテゴリ
以上
以下

KOTAKE杯没問300G

MrKOTAKE 自動ジャッジ 難易度:
5月前

4

問題文

$AB=AC$ の鋭角二等辺三角形がありその垂心を $H$ とします.線分 $BC$ 上に点 $D$ をとり,点 $P,Q$ を $APQD$ がこの順に一直線上に並ぶようにとると $4$ 点$ACHP$,$4$ 点 $ABHQ$ はそれぞれ共円であり,
$$BD=15,\quad CD=25,\quad PQ=8$$
が成立しました.このとき, $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

関数の微動点

noname 自動ジャッジ 難易度:
6月前

1

問題文

$p$を正の実数の定数とする。定数でない多項式$f$が次を満たすとき、$f(1)$の値の最大値$M$と最小値$m$を求めよ。

条件:任意の実数$q$に対し、$|q-r|≦p$をみたす実数$r$が存在し、$f(f(q))=f(r)$を満たす。

解答形式

$M+m$の値を$1$行目に半角で入力してください。不要な小数点などはつけないでください。(例:2.0、3.1400などは×)

連立方程式だよ

udonoisi 自動ジャッジ 難易度:
6月前

6

問題文

$11$ 個の実数 $A_0 , A_1 , \cdots , A_{10} $ が $n=0 , 1 , \cdots , 9$ に対して$$\sum_{k=0}^{10}{A_kk^n}=0$$を満たします. $A_0=1$ のとき, $\sum_{k=0}^{10}{A_kk^{10}}$ の値を求めてください.
ただし, $0^0=1$とします.

解答形式

非負整数を答えてください.

第3問

smasher 採点者ジャッジ 難易度:
6月前

0

問題文

$x$、$y$、$n$を正整数、$p$を$n$以上の素数とする。
$$x^{p}-y^{p}=p^{n}$$
を満たすような組($x,y,n,p$)は存在しないことを示せ。

解答形式

証明をお願いします。

第1問

smasher 採点者ジャッジ 難易度:
6月前

1

問題文

$n$を正整数、$p$を素数とする。
$n^{2}+p$が$4$で割り切れるような組$(n,p)$は無限に存在することを示せ。

解答形式

証明をお願いします。

第2問

smasher 採点者ジャッジ 難易度:
6月前

4

問題文

実数から実数への関数$f$であって任意の実数$x,y$について$$f(x)+f(f(y)+x)=f(f(x))+4y$$
が成り立つようなものを全て求めよ。

解答形式

簡単でいいので証明もお願いします。

OMC不採用問題2

Tehom 自動ジャッジ 難易度:
6月前

5

問題文

次の式の値は互いに素な正の整数 $p,q$ を用いて $\displaystyle \frac{q}{p}$ と表せるので,$p+q$ の値を解答してください.
$$\displaystyle \sum_{n=1}^{10} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{(n-1)!(i+j)!(2n-i-j)!}{i!j!(2n)!(n-i)!(n-j)!}$$

解答形式

半角数字で解答してください.

平面図形

taku1729 自動ジャッジ 難易度:
7月前

7

問題文

△ABCの内心をI、△ABCの外接円とAIの交点をL(≠A)、AB上にD(≠A,B)をとったとき以下が成立しました。$$LI=LD,AI=4,AD=5,BL=8$$DBの長さを解答してください。

解答形式

半角数字で入力してください。

自作2

tomorunn 自動ジャッジ 難易度:
7月前

11

問題文

太郎君は遅刻魔で、よく遅刻をする。
それを見かねた先生は、
・3日連続で遅刻したら特別指導
・10日間の間に6回以上遅刻をしたら特別指導
というルールを設けた。このとき、10日間で太郎君が特別指導を受けないよう登校する方法は合計何通りあるか。

解答形式

例)半角数字で入力してください。

自作3

tomorunn 自動ジャッジ 難易度:
7月前

5

問題文

モニターに0が表示されている。ここには3つのボタンがあり、
・ボタン$A$を押すとモニターの数字が1増える。
・ボタン$B$を押すとモニターの数字が2増える。
・ボタン$C$を押すとモニターの数字が3増える。
ボタン$A~C$をそれぞれ任意の回数押したとき、
最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。

解答形式

例)半角数字で入力してください。


問題文

$ $ 次の等式をみたす正整数の組 $(x, y, z)$ の個数を求めて下さい.
$$x^3 + 2x^2y + x^2z + xy^2 + xyz = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$$

解答形式

半角英数にし,答えとなる非負整数値を入力し解答して下さい.

PDC005 (D)

poinsettia 自動ジャッジ 難易度:
7月前

74

$2$ 番目に小さい正の約数と $3$ 番目に小さい正の約数の和が $12$ であるような,正の約数が $3$ つ以上ある正の整数のうち,$100$ 以下のものの総和を求めよ.