数学の問題一覧

カテゴリ
以上
以下

文化祭算数問題 3

sta_kun 自動ジャッジ 難易度:
2月前

13

問題文

四角形 $ABCD$ について,線分 $BD$ 上に点 $E$ を取ると,$AE=BD$ で,角 $EAD=$ 角 $AED=$ 角 $EBC=$ 角 $BCE=40°$ が成り立ちました.このとき角 $BDC$ は何度ですか?

解答形式

半角数字で解答してください.

文化祭算数問題 2

sta_kun 自動ジャッジ 難易度:
2月前

10

問題文

四角形 $ABCD$ について,角 $DBC=20°$,角 $BDC=90°$,角 $ADB=40°$,$AD:BC=1:2$ が成り立ちました.このとき角 $ABD$ は何度ですか?

解答形式

半角数字で解答して下さい.

文化祭算数問題 1

sta_kun 自動ジャッジ 難易度:
2月前

9

問題文

角 $C$ が直角となるような三角形 $ABC$ の辺 $BC$ 上に点 $D$ をとると,角 $DAC:$ 角 $BAD=1:2$,$AD$ の長さは $3 \mathrm{cm}$,$AB$ の長さは $5 \mathrm{cm}$ となりました.このとき,$BD:DC$ を求めてください.ただし,求める比は互いに素な正整数 $a,b$ を用いて $a:b$ と表せるので $a+b$ の値を解答して下さい.

解答形式

半角数字で解答してください.

Q3.素数

34tar0 自動ジャッジ 難易度:
2月前

9

問題文

素数 $p$ を用いて表される整数 $p-4, p^2-6, p^3-26$ が全て素数となるような $p$ の総和を求めよ。

解答形式

算用数字で解答してください。

2月前

15

問題文

$1$ 以上 $12$ 以下の整数からなる集合を $U$ とし,空でない $U$ の部分集合 $S, T$ を
$$S \cup T = U,S \cap T = \phi$$となるよう定めたところ,$S$ の元の和と $T$ の元の平方和が等しくなりました.このような集合の組 $(S, T)$ すべてに対する「$S$ の元の和」の総和を解答して下さい.


たとえば,
$$S = \{1, 2, ..., 9\},T = \{10, 11, 12\}$$であるなら,$S$ の元の和は $1 + 2 + \cdots + 9 = 45$ と計算され,$T$ の元の平方和は $10^2 + 11^2 + 12^2 = 365$ と計算されます.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

柏陽祭A

re.ghuS 自動ジャッジ 難易度:
2月前

71

12色で,正八面体の各頂点を全ての頂点が異なる色になるように塗るとき,色の塗り方は何通りあるか求めよ.ただし,回転して一致するものは同じものと数える.

柏陽祭F

re.ghuS 自動ジャッジ 難易度:
2月前

22

10進数における$10!$を$n$進数に変換したときの末尾につく0の数を $f(n)$ とする.このとき,$\sum\limits_{n=2}^\infty f(n)$を求めよ.

柏陽祭G

re.ghuS 自動ジャッジ 難易度:
2月前

11

$xy$平面における最高次係数が1である4次関数$f(x)$に対して,$y=x^2$が2点(10,$f(10)$),(16,$f(16)$)で接しているとき,$f(x)$を求めよ.ただし,$f(x)$は整数$a, b, c, d$を用いて$x^4+ax^3+bx^2+cx+d$と表されるため,$\mid a\mid+\mid b\mid+\mid c\mid+\mid d\mid$を答えよ.

柏陽祭E

re.ghuS 自動ジャッジ 難易度:
2月前

16

$H$高校には一郎,二郎,三郎,...,$n$郎の$n$人の生徒が在籍している.この$n$人が英語と数学の試験を受けたとき,英語の分散が2,数学の分散が8,英語と数学の相関係数が0.5であった.
$1 \leq k \leq n$を満たす自然数$k$について,$\vec{a}$の第$k$成分は$k$郎の英語の平均値との偏差,$\vec{b}$の第$k$成分は$k$郎の数学の平均値との偏差となるように$\vec{a}, \vec{b}$を定義する.
このとき,$\vec{a}$と$\vec{b}$の内積$\vec{a}\cdot\vec{b}$を求めよ.

柏陽祭B

re.ghuS 自動ジャッジ 難易度:
2月前

21

1辺4の正三角形の内部に点$P$をとる.
点$P$の各辺からの距離をそれぞれ$a, b, c$と置いたとき, $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{11\sqrt{3}}{6}, \frac{1}{a}\times\frac{1}{b}\times\frac{1}{c}=\frac{\sqrt{3}}{2}$が成り立ったから$a^2+b^2+c^2$ の値を求めよ.ただし,答えは互いに素な自然数$a, b$を用いて$\frac{a}{b}$と表されるので,$a+b$の値を答えよ.

柏陽祭C

re.ghuS 自動ジャッジ 難易度:
2月前

35

$p, q$を素数とする.自然数$N=p^6-q^6$と表され、相違なる素因数をただ3つもつとき,$N$の値を求めよ.

柏陽祭D

re.ghuS 自動ジャッジ 難易度:
2月前

18

$a$を$b$で割った余りを$f(a, b)$とする.
このとき,$\sum\limits _{n=1} ^{10000} f(n!+1, n+1)$の値を求めよ.