数学の問題一覧

カテゴリ
以上
以下

igma

公開日時: 2025年12月6日17:37 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$1$ 以上 $10^7$ 以下の $11$ の倍数全てに対して,それぞれの各位の和の総和を求めてください.

igma

公開日時: 2025年12月6日17:25 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$2024!$ 以上の正整数 $n$ のうち,$\dfrac{2025!}{n}$ の小数部分が $\dfrac{2025!-67}{2025!}$ より大きいものの個数を求めてください.

alpha

公開日時: 2025年12月3日0:33 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題

$AB=3$なる鋭角三角形$ABC$について, $AC$, $BC$の中点をそれぞれ$M$, $N$とすると, $AN=4$が成立した. また, 三角形$ANC$の外接円と直線$MN$との交点のうち, $N$でないほうを$D$とすると, $DC=9$が成立した. このとき, $AD$の長さの二乗は互いに素な正整数$a$, $b$を用いて$\frac{a}{b}$と表されるので$a+b$を解答せよ.

alpha

公開日時: 2025年12月2日21:25 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題

$AB=AC$なる二等辺三角形$ABC$について, $A$から$BC$に下した垂線の足を$H$とし, 線分$AH$上に点$P$をとると,
$$
AP=5 PH=3 ∠PBC=∠PAC
$$
が成立した. このとき, 三角形$ABP$の面積の2乗を解答せよ.

Kta

公開日時: 2025年11月25日19:31 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ について,その垂心を $H$ ,外心を $O$ とする.直線 $BH$ と直線 $AC$ との交点を $E$ ,直線 $CH$ と直線 $AB$ との交点を $F$ とすると,$3$ 点 $E,O,F$ は同一直線上にあった.$AH=8,AO=6$ のとき,四角形 $EFBC$ の面積の二乗の値を求めよ.

解答形式

半角数字で入力してください。

Kta

公開日時: 2025年11月25日19:29 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ について,線分 $BC$ の中点を $M$ とし,$\angle ABC$ の二等分線と直線 $AM$ との交点を $D$ とすると,以下が成立した.
$$BC=4,\angle ADB=\angle AMC=3\angle BAM$$このとき,線分 $AC$ の長さの二乗は正整数 $a,b$ を用いて $a+\sqrt b$ と表せるので,$a+b$ を解答せよ.

解答形式

半角数字で入力してください。

Kta

公開日時: 2025年11月25日19:28 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

任意の正整数 $m$ に対して $n^m-n$ が $10!$ の倍数であるような $10!$ 以下の正整数 $n$ の個数を求めよ.

解答形式

半角数字で入力してください。

Ryomanic

公開日時: 2025年11月21日18:18 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

nを4以上1000以下の整数とする。1000以下の正整数の組$(a_1,a_2,…,a_n)$であって、$$a_1=\frac{a_2+a_3+a_4}{3},a_2=\frac{a_3+a_4+a_5}{3},…,a_{n-1}=\frac{a_n+a_1+a_2}{3},a_n=\frac{a_1+a_2+a_3}{3}$$を満たすものの個数を求めよ。

解答形式

半角数字で解答してください。

k4rc

公開日時: 2025年11月12日21:59 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB \lt AC$ なる鋭角三角形 $ABC$ の垂心を $H$ とし,辺 $BC$ の中点を $M$ とします. $\angle BAC$ の二等分線と辺 $BC$ の交点を $D$ とすると,線分 $AD$ 上の点 $S$ が $HS \perp AM$ を満たし,さらに以下が成り立ちました.
$$ AH=10, \quad AS=9, \quad SD=8 $$このとき, $BD^2+CD^2$ の値は $\gcd (a,c)=1 $ なる正の整数 $a,b,c$ を用いて $\dfrac{a-\sqrt{b}}{c}$ と表せるので, $a+b+c$ の値を解答してください.

解答形式

正の整数を半角で解答.

noname

公開日時: 2025年11月11日20:40 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

関数方程式

問題文

次を満たす整数係数多項式の組 $(f,g)$ はいくつありますか?
$$f(g(x))=x^6+1 0≦f(0),g(0)≦2025$$

解答形式

条件を満たす組の個数を半角整数で $1$ 行目に入力してください。

Shota_1110

公開日時: 2025年11月10日20:52 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$ $ $0$ 以上 $9$ 以下の整数 $a, b, c, d$ に対し,数列 $(x_0, x_1, ..., x_{1110})$ を次のように定めます:

  • $x_0 = a$ である.
  • $(x_0, x_1, ..., x_{10})$ は公差 $b$ の等差数列をなす.
  • $(x_{10}, x_{11}, ..., x_{110})$ は公差 $c$ の等差数列をなす.
  • $(x_{110}, x_{111}, ..., x_{1110})$ は公差 $d$ の等差数列をなす.

$x_{1110}$ のとり得る値の総和を求めて下さい.

解答形式

答えは非負整数値であることが保証されます.半角英数にし,答えとなる非負整数値を入力し解答して下さい.

aa36

公開日時: 2025年11月7日19:32 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正方形 $ABCD$ があります.この対角線 $BD$ 上に点 $P$ を取ります.ただし,$BP<PD$ です.$P$ を中心とし$B$ を通る円と円 $APD$ が,直線 $BD$ に関し,点 $C$ と同じ側にある点 $Q$ で交わりました.
$AB = 13, BQ = 10$ が成り立つ時,$QC$ の長さの $2$ 乗を求めてください.

解答形式

非負整数で入力してください.