公開日時: 2025年4月1日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
鋭角三三三角形 $ABCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$ において,その外心を $O$,垂心を $H$,内接円を $\omega$ としたとき,$O,H$ はともに $\omega$ 上にあり,$\omega$ の半径は $1$ であった.
この条件下で線分 $OH$ の長さとしてありうる値の総積を $xxxxxxxxxx$ とする.$xxxxxxxxxx$ の最小多項式を $P$ として,$|P()|$ の値を解答せよ.ただし,$xxxxxxxxxx$ が最小多項式をもつことが保証される.
半角数字を用いて解答せよ.解答すべき値が $$ でないことは保証される.
公開日時: 2025年4月1日20:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$$\sum^{100}_{k=1}\left\lfloor \sqrt[3]{1001001-k^3}\right \rfloor$$
を $2$ で割った余りはいくつですか?
非負整数で解答してください。
この問題の提出制限は $1$ 回です。
公開日時: 2025年4月1日20:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
左から右に一列に並んだ $n$ 色のボールがあります。AliceとBobはボールを使ったデスゲームで遊ぶようです。
Aliceが先手でそれ以降は交互に手番を行います。
各手番のプレイヤーは隣り合う $2$ つのボールを選択し、その位置を入れ替えます。この時、その $2$ つのボールの組が(自分相手関係なく)過去に選ばれていた場合、全てのボールが大爆発し、手番のプレイヤーは死にます。死ななかった方が勝ちです。
例: $n=3$ の場合
最初のボールの並びを (赤,青,黄) とします。
Aliceの手番
赤と青を入れ替えました。盤面:(青,赤,黄)
Bobの手番
赤と黄を入れ替えました。盤面:(青,黄,赤)
Aliceの手番
黄と青を入れ替えました。盤面:(黄,青,赤)
Bobの手番
赤と青を入れ替えようとしますが、赤と青の組は最初のターンで選ばれています。全てのボールが大爆発し、Bobは死にました。
Aliceの勝利です。
Bobが死んでしまったのでゲームが出来なくなってしまいました...
あなたが代わりに参加して下さい。
あなたが負けた場合は全ての問題が大爆発し、得点が-5000兆点になります。
今回は $n=333$ です。あなたが先手か後手を選んでください。
あなたが選ぶ手番を先手か後手の漢字二文字で解答してください。
この問題に不正解の判定を受けた場合、あなたのUSOMO004での得点は $-5000000000000000$ 点になります。
この問題の提出制限は $1$ 回です。
公開日時: 2025年4月1日20:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$40000000001$ は二つの異なる素数の積で表されます。その二つの素数のうち小さい方を解答してください。
非負整数で解答して下さい。
この問題の提出制限は10回です。
公開日時: 2025年3月31日12:57 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.
本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.
公開日時: 2025年3月30日17:17 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,$AD,BC$の中点をそれぞれ$M,N$とする.$A N$と$EF$の交点を$P$とし,$DP$と$MN$の交点を$Q$,三角形$ABC$の外接円と$AQ$が再び交わる点を$R$としたとき,$$AN=10 AB=9 NR=3$$が成立した.このとき,$AC²$の値を解答してください.
半角で解答してください.
公開日時: 2025年3月29日1:30 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\sqrt[abc]{a! + b! + c!}$が整数となるような正の整数の組$(a,b,c)$をすべて求めよ.
すべての組に対する $a+b+c$ の値の総和を解答してください。論証は解説を参照してください。
公開日時: 2025年3月23日20:49 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
四角形$ABCD$があり、次の条件を満たします。
$∠A=∠B=∠C, ∠D=135°, BC=4\sqrt{6}, CD=8$
この四角形の面積$S$は$a + \sqrt{b}$の形で表されるので、$a + b$を解答してください。
半角数字で答えをそのまま入力。
問題に不備等あればtwitterのDMなどで気軽にお願いします。
Tex初めて使いました。
問題思いつくのは簡単なんですけど、解説は未だに上手く書けませんね…
公開日時: 2025年3月18日20:46 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$ω=e^{\frac{2πi}{7}}$を原始 7 乗根とする$A=ω+ω 2 +ω 4$および$B=ω 3 +ω 5 +ω 6$ とおくとき、$A^3 +B^3$ の値を求めよ。
半角英数字入力してください。
公開日時: 2025年3月11日10:53 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.
半角数字で入力してください。